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Introduction 
For intelligent-systems to interact with humans, natural 
language is the method accessible to most of the world’s 
population. For that reason, text generation is a very im-
portant, though also very difficult problem in machine 
learning. Several different methods of text generation exist, 
but finding nonsensical results can be commonplace. Cur-
rently, state-of-the-field in natural language processing 
(NLP) is the use of large language models (LLMs) such as 
OpenAI’s GPT-3 or Google’s BERT, which do perform 
well at most natural language processing (NLP) tasks; 
however, these LLMs do pose some concerning downsides 
with their use. The largest concern for LLMs is the intro-
duction of bias into the model due to the extremely large 
corpus used for training. For instance, GPT-3 was trained 
on the Common Crawl Dataset, which includes documents 
linked to from Reddit, Wikipedia articles, and a collection 
of books. With such a large corpus, there may inevitably be 
some level of biased viewpoints being expressed which 
could show up in the outputs from the trained model 
(Bender, et al. 2021). While unintentional bias isn’t a ma-
jor concern for a small-scale student project, it is worth 
some consideration, and we believe that this ethical issue 
of bias in LLMs presents an opportunity to evaluate the 
performance of small language models that have been 
trained on a custom corpus. In addition, utilizing small lan-
guage models allows us to explore some novel methods of 
developing text generation models that have been the focus 
of recent research in NLP. 

For this project, we intend to experiment with training 
language models with a dataset of song lyrics from differ-
ent artists. As a baseline, we will implement and train a re-
current neural network (RNN) with long short-term 
memory (LSTM) and maximum likelihood estimation 
(MLE). In comparison to this baseline model, we will de-
velop a similar RNN with LSTM, but with hyperparameter 
tuning in an attempt to improve evaluation results. Further, 
we will utilize the TextBox (Li, et al. 2021) module– 
which has implemented a framework for training and eval-
uating a large number of different language models– to 
train and evaluate a few different generative adversarial 

network (GAN) text generation models. Our analysis will 
include evaluation of the models using both a human-scor-
ing method and a computed score. With the selected set of 
song lyrics that we will use for training and evaluation, we 
hope to see that the models incorporate different themes in 
language usage (such as word choice pertaining to certain 
topics) that are found in the corpus. For instance, our cor-
pus includes lyrics from Stevie Wonder, which generally 
contains upbeat themes (example lyric: “Love’s in need of 
love today”), but also includes lyrics from Metallica, which 
tend to have a much darker tone in general word usage (ex-
ample lyric: “Rule the midnight air, the destroyer”). While 
previous research into model-based generation of song lyr-
ics (Potash, Romanov and Rumshisky 2015) has explored 
developing a metric utilizing inverse document frequency 
to compare a generated lyric’s similarity to a specific artist, 
our evaluation will instead utilize a much simpler metric. 
For human-evaluation, we will look at the semantic mean-
ing of the generated text (answering “does it make 
sense?”), as well as evaluating the grammatical correctness 
of the generated text. For computer calculated scores, we 
will utilize the BLEU evaluation, which compares the n-
gram similarity between the generated text and an evalua-
tion corpus. 

Background and Related Work  

Previous Work into Artificial Lyric Generation  
In their paper “GhostWriter: Using an LSTM for Auto-
matic Rap Lyric Generation” (Potash, Romanov and 
Rumshisky 2015) a group from the University of Massa-
chusetts Lowell utilized a RNN with LSTM architecture to 
artificially generate rap lyrics. This research sought to not 
only generate lyrics, but to generate the structure of lyrics, 
taking into account rhyme scheme and similarity to a target 
rap artist. The results of this paper present promising re-
sults of utilizing a RNN-LSTM model for the generation of 
novel lyrics that are similar in style to a reference corpus.  

Recurrent Neural Networks 
RNNs and LSTMs have seen implementation in text gener-
ation tasks previously, which led us to choose LSTMs for 



 

 

this project. Due to its previous implementations for song 
lyrics, and being a simpler network structure, we decided 
to use an LSTM for our baseline model. We also decided 
to tune the parameter further from the baseline model to 
see if we get better results. LSTMs also solve the vanishing 
error problem present in traditional RNNs (Staudemeyer 
and Morris 2019). LSTMs work by taking in a vector of 
word encodings from the corpus and using probabilistic 
prediction to guess what the next character in the sequence 
will be. We choose LSTMs over other RNN architectures 
due to the memory cell present in LSTMS with the hopes 
that it would produce more convincing and meaningful 
song lyrics as the memory cell can hold past information 
longer than a traditional RNN. The memory cell has sev-
eral important features including input gates, output gates, 
forget gates, and the cell memory (Potash, Romanov and 
Rumshisky 2015). The input gates use a sigmoid activation 
function to control the signals that are sent to the cell 
memory while the output gates learn how to control access 
to the memory cell contents (Staudemeyer and Morris 
2019). The forget gate is attached to the self-connection in 
the cell to adjust weights when the stored information is no 
longer needed (Staudemeyer and Morris 2019). For our 
RNN LSTM implementations we utilized Keras packages 
with more detailed explanation below in the Methodology 
section of this report. For both of the RNN implementa-
tions, cross-entropy loss was used. The formula for the 
cross-entropy loss is calculated after the SoftMax layer and 
is calculated with this formula: 

  
Generative Adversarial Models (GANs) 
The usage of GANs has emerged as a means to alleviate 
what is known as “exposure bias” in RNN networks, which 
is a result of the model being trained to predict a word, 
given a sequence of ground truth words, but at the infer-
ence stage, being instead provided with the previous se-
quence of words generated by the model. As a result of the 
exposure bias, errors quickly accumulate during the infer-
ence stage, so that a generated sentence may initially seem 
reasonable, but will quickly start to deteriorate as sentence 
length increases (Yu, et al. 2017, Zhang, et al. 2017). By 
utilizing elements from reinforcement learning, GANs can 
alleviate exposure bias in text generation tasks. 

With GANs, two models are utilized that are trained ad-
versarially: a discriminator, which is trained to recognize 
whether a data example is real or not, and a generator, 
which is trained to generate synthetic data with the goal to 
trick the discriminator into believing that it is real (Yu, et 
al. 2017). The objective of training a GAN is to train a gen-
erator that “functionally maps samples from a given (sim-
ple) prior distribution, to synthetic data that appear to be 
realistic” (Zhang, et al. 2017). In computer vision tasks, 

GANs have been very successful, with state-of-the-field 
image generation algorithms that are capable of creating 
artificial images indistinguishable from a photo. However, 
text generation is different from image generation in sev-
eral ways, but primarily: text generation deals in sequences 
of discrete tokens, while image generation deals with real-
valued, continuous data (Yu, et al. 2017). In a traditional 
GAN, the loss can be calculated between the output of the 
discriminator and the generator output to yield the gradient 
for updating the parameter weights of the generator. How-
ever, with discrete sequences like text, a parameter update 
with respect to a gradient determined from the discrimina-
tor output doesn’t make any sense because there is “proba-
bly no corresponding token for such slight change in the 
limited dictionary space” (Yu, et al. 2017). 

SeqGAN (Yu, et al. 2017) 

 With SeqGAN, the authors decided to consider text se-
quence generation as a sequential decision-making process. 
In this implementation, the generative model is essentially 
a policy-based reinforcement learning agent, utilizing a 
RNN with LSTM cells.  

The generator directly trains a stochastic parameterized 
policy via a policy-gradient method, and utilizes a Monte 
Carlo search to approximate the state-action values. The 
environment state at each step is the generated sequence of 
tokens so far, and the action is the next token in the se-
quence to be generated. The reward values are estimated as 
the likelihood that the generator will trick the discriminator 
with a synthetic sample that the discriminator evaluates to 
be real. The discriminator is a convolutional neural net-
work (CNN) which evaluates every completed sequence of 
generated tokens. The last layer of the CNN is fully-con-
nected with sigmoid activation and outputs the probability 
that the sequence is real. The output of the discriminator is 
then used to guide training of the generator.  

For training of the SeqGAN model, the generator is first 
pre-trained using MLE estimation on a training data set. 
Next, the discriminator is also pre-trained, by minimizing 
cross-entropy with negative samples from the pre-trained 
generator and positive samples from the training data set. 
Afterward, the RNN-LSTM generator and CNN discrimi-
nator are alternatively trained. The generator is trained for 
g-steps, while the discriminator is periodically trained for 
d-steps. At each iteration of the discriminator training loop 
(d-steps), the discriminator is trained to classify using real-
data from the training set versus fake data from the genera-
tor, with an equal balance between positive and negative 
examples. During adversarial training, the generator is up-
dated by minimizing cross-entropy loss, utilizing the func-
tion: 

 
where “y is the ground truth label of the input sequence, 
and y-hat is the predicted probability from the discrimina-
tive model” (Yu, et al. 2017). 



 

 

TextGAN (Zhang, et al. 2017) 

In their paper detailing TextGAN, the author’s note their 
motivations for building upon the techniques implemented 
with SeqGAN. First, they note that “mode collapse”, where 
a generator tends to produce a single output for multiple la-
tent representations (encoded text), is an issue with text 
generation GANs such as SeqGAN. Second, they note the 
vanishing gradient problem that exists for a generator when 
the discriminator is close to its local optimum. To alleviate 
these problems, the TextGAN authors set out to utilize a 
feature-matching approach to train the generator, instead of 
directly optimizing the objective as with a standard GAN 
approach.  Rather than the objective of generator training 
being increasing the probability of the discriminator being 
fooled by synthetic data, they instead train the generator to 
more-closely produce a synthetic sentence that matches an 
encoding from the discriminator. In this model, the dis-
criminator attempts to “produce sentence features that are 
most discriminative, representative and challenging” 
(Zhang, et al. 2017). Essentially, the adversarial loop with 
training TextGAN is that the discriminator attempts to 
identify most-informative sentence features, while the gen-
erator attempts to match those identified features.  

The model architecture of TextGAN is similar to Se-
qGAN, utilizing a RNN-LSTM generator and a CNN dis-
criminator. The discriminator essentially acts as a feature 
detector, convolving over the text sequence to produce a 
latent feature map, which is fed to a max-over-time pooling 
layer to determine a filter particular to a certain feature. 
This filter is then convolved over every position of the sen-
tence, allowing features to be extracted regardless of posi-
tion in the sentence. The model uses multiple filters with 
varying window sizes for extracting these features. The 
RNN-LSTM generator of the TextGAN model is trained to 
convert an encoded feature vector into a synthetic sen-
tence. The first word of the generator sentence is determin-
istically generated from the encoded feature vector, with 
the remaining words sequentially generated with the RNN. 

For training with TextGAN, the generator is first pre-
trained using a CNN-LSTM autoencoder. For discrimina-
tor pretraining, the authors utilize a method of “permuta-
tion training,” where for each sentence in the training cor-
pus, two words are randomly swapped, to create a slightly 
different example for the discriminator to pre-train to clas-
sify real versus synthetic data. The authors claim that the 
permutation pre-training is necessary because it “requires 
the discriminator to learn features characteristic of sen-
tences’ long dependencies” (Zhang, et al. 2017). For the 
generator, TextGAN utilizes the loss function: 

 
, where MMD is the maximum mean discrepancy “be-
tween the empirical distribution of sentence embed-
dings…for synthetic and real data” (Zhang, et al. 2017). 

LeakGAN (Guo, et al. 2017) 

The authors of the LeakGAN method note that, while re-
cent GAN methods have been fairly successful in the gen-
erative text domain–especially with treating text generation 
as a sequential decision-making stochastic policy-gradient 
method– there is a lack of research into text generation of 
longer form (more than 20 words). They claim that longer 
form text generation is necessary for “practical tasks such 
as auto-generation of news articles or product descriptions” 
(Guo, et al. 2017). They also note that the main drawbacks 
of other GAN-based text generation methods such as Se-
qGAN for longer-form text, is that the binary signal from 
the discriminator is sparse because it is only generated 
from the full-length sequence, and that the signal is not in-
formative enough for the generator to sufficiently learn for 
longer-sequence data, as the discriminator signal does not 
preserve syntactic structure or semantics of the text. As 
such, the authors propose some novel methods with 
LeakGAN to attempt to address these problems. 
 To deal with the problems of sparse and uninformative 
reward signals, LeakGAN utilizes elements of hierarchical 
reinforcement learning (RL). In this model, the generator is 
split into a high-level “manager” module and a low-level 
“worker” module. The discriminator for this model utilizes 
a CNN similar to other text-generation GAN models; how-
ever, unlike other GANs researched for this report, the 
CNN discriminator in LeakGAN serves primarily as a fea-
ture-extractor, where information from the last layer of the 
CNN is “leaked” to the generator. The authors claim this to 
be a much better guiding signal for the generator, “since it 
tells what the position of currently-generated words is in 
the extracted feature space” (Guo, et al. 2017). For the gen-
erator function, hierarchical RL methods are utilized, 
where the “manager” is a LSTM network that receives the 
feature vector input from the discriminator, and outputs a 
goal-vector to the “worker”, another LSTM module, as a 
guiding signal for training.  
 For training, LeakGAN utilizes pre-training of the gen-
erator: the “manager” LSTM is pre-trained to distinguish 
the transition of real text samples in the feature space, 
while the “worker” LSTM is pre-trained with maximum 
likelihood estimation. Following pre-training, the generator 
and discriminator are alternatively trained, with the “man-
ager” and “worker” networks also being alternatively 
trained for every generator training step. The overall goal 
in training LeakGAN is to generate a gradient from the 
manager to update the worker model weights. The genera-
tor update gradient is defined as: 

 
, where 𝑄ி(𝑠௧ , 𝑔௧) is the estimated reward of the current 
policy, which is estimated with Monte Carlo search. 𝑑௖௢௦ 
“represents the cosine similarity between represents the co-



 

 

sine similarity between the change of feature representa-
tion, after c-step transitions, and the goal vector 𝑔௧(𝜃௠)” 
(Guo, et al. 2017). 

Methodology 
To conduct the experiment of evaluating different models 
for unconditional text generation, we knew that we would 
need to use GPU-enabled computing resources, as all of 
these text generation models utilize deep neural networks, 
which are significantly faster to train with a GPU since 
deep learning utilizes parallel matrix multiplication opera-
tions which a GPU is capable of handling. Accordingly, we 
chose to utilize the Google Colab platform for the imple-
mentation of this project because it offers free access to a 
GPU. One downside to the Google Colab platform is that 
there is a limit to how long it will allow a process to run. A 
problem that we frequently encountered was a model-train-
ing process being terminated before it could complete. As 
such, to be able to complete these experiments, we had to 
limit the corpus text size so that model training and evalua-
tion could be completed within the limitations of the 
Google Colab platform. 

Models 

Baseline RNN implementation 

For the baseline model we used Keras to develop a simple 
LSTM using the Keras sequential model feature. The 
model has 2 layers to it, an LSTM layer with 128 units and 
a dense layer with a SoftMax activation function. The 
model was then compiled with a categorical cross entropy 
loss function and Adam optimizer. This model is trained 
for 40 epochs with a batch size of 128.  We used a se-
quence length of 10 for the baseline with the corpus length, 
number of characters, and number of patterns being deter-
mined by the data we used. The data we used for both of 
the RNN LSTM models was the training data that was used 
to train the generator for the GAN to allow for a better 
comparison of results.  

 

 

Figure 1: Training loss graph of the baseline RNN 
with LSTM cells over 40 training epochs 

Tuned RNN implementation 

For the tuned model, we used Keras sequential model 
again with 3 layers. We used an LSTM layer with 256 
units, a dropout layer with a dropout rate of 0.2, and a 
dense layer with a SoftMax activation function. This model 
was also compiled with a categorical cross-entropy loss 
function and Adam optimizer. We changed the sequence 
length on this model from 10 on the baseline to 120 so the 
model would be able to capture much larger sequences of 
characters. We tried sequence lengths of 40, 80, 100, and 
120 and 120 was able to learn more about the structure and 
patterns from the training data so we continued with that.  
For this model we also changed the scale factor or temper-
ature from what seems to be the default of 1.0 to 0.2. We 
tested the temperature at 0.2, 0.35, 0.5, 1.0 and 1.2 and de-
cided to move forward with 0.2 as it produced more con-
vincing song lyrics. With this lowered temperature, the 
model was less willing to make mistakes with its genera-
tion. For this model we trained for 80 epochs with a batch 
size of 128. We increased the epochs the model was 
trained on to lower the loss value and for the model to 
learn to produce better song lyrics by learning more pat-
terns in the training corpus. We did notice that training on 
too many epochs (about 120) the loss value began to in-
crease significantly. 

 

 

Figure 2: Training loss graph of the RNN with LSTM 
cells and tuned hyperparameters over 80 training epochs 

GAN Implementations 

We implemented the GAN models (SeqGAN, TextGAN, 
and LeakGAN) for this report with the Python module 
TextBox (Li, et al. 2021) which is a PyTorch based text 
generation framework developed by a group from Renmin 
University of China. We chose to use this module because 
it has implemented many GAN models for text generation 
uses, and also has implemented multiple evaluation 
measures. We slightly modified this module for these ex-
periments, to save training loss logs and evaluation scores 
to .csv files. 



 

 

To use a custom data set with the TextBox module, it 
needs to be split into three files: a train file, a test file, and 
an evaluation file. Because we are utilizing unconditional 
text generation, we do not need a testing file with labeled 
data (but it is required for the TextBox library to function), 
so the test and evaluation files for our song lyrics corpus 
are identical. 

The model training steps for each model utilized from 
the TextBox module is as follows (Li, et al. 2021): 

SeqGAN 

In the TextBox module’s implementation of SeqGAN, the 
generator is first pre-trained for 80 epochs, where it utilizes 
cross-entropy loss between the generated output and the 
target sequence for updating parameter weights. The dis-
criminator is then pre-trained for 50 epochs, where it up-
dates parameter weights by evaluating both real and fake 
data, then calculates the average cross-entropy loss of the 
predictions for both the real and fake data. Last, the model 
is trained adversarially for 80 epochs, where the generator 
is updated utilizing the cross-entropy loss between the 
ground truth label of the input sequence and the predicted 
probability of the generator being able to trick the discrimi-
nator (to classify a generated sample as real). During each 
epoch of adversarial training, the discriminator is trained 
for an additional 5 epochs, again utilizing cross-entropy 
loss with real and fake data. A graph displaying the adver-
sarial training losses for the SeqGAN generator is dis-
played in Figure 3. 

 

 

Figure 3: Adversarial training loss graph of the SeqGAN 
generator, showing cross-entropy loss over 80 adversarial 
training epochs 

TextGAN 

In the TextBox module’s implementation of TextGAN, the 
generator is first pre-trained for 80 epochs, where it utilizes 
cross-entropy loss between the generated output and the 
target sequence for updating parameter weights. The dis-
criminator is then pre-trained for 50 epochs, where it up-
dates parameter weights by evaluating both real and fake 
data, then calculates the average cross-entropy loss of the 
predictions for both the real and fake data, then addition-
ally calculates and adds maximum mean discrepancy and 
reconstructed loss for the feature encoder. The discrimina-
tor loss is also regularized with L2 normalization. Last, the 
model is trained adversarially for 80 epochs, where the 

generator is updated utilizing the maximum mean discrep-
ancy (MMD), which “measures the mean squared differ-
ence between two sets of samples” (Zhang, et al. 2017), 
between the ground truth label of the input sequence and 
the generated sequence. During each epoch of adversarial 
training, the discriminator is trained for an additional 5 
epochs, again utilizing cross-entropy loss with real and 
fake data, plus maximum mean discrepancy and recon-
struction loss. A graph displaying the adversarial training 
losses for the TextGAN generator is displayed in Figure 4, 
where the generator attempts to minimize the MMD be-
tween generated and real data. 

 

 

Figure 4: Adversarial training loss graph of the TextGAN 
generator, showing maximum mean discrepancy over 80 
adversarial training epochs 

LeakGAN 

In the TextBox module’s implementation of LeakGAN, the 
generator is first pre-trained for 80 epochs, where the 
“manager” and “worker” sub-modules are each updated. 
The manager sub-module calculates cosine similarity loss 
between its hidden state output and the real features. The 
worker sub-module is updated during each pre-training 
epoch with the cross-entropy loss between training targets 
and the “leaked” representation from the discriminator 
model. The discriminator is then pre-trained for 50 epochs, 
where it updates parameter weights by evaluating both real 
and fake data, then calculates the average cross-entropy 
loss of the predictions for both the real and fake data which 
is regularized with L2 normalization. Last, the model is 
trained adversarially for 10 epochs of interleaved adversar-
ial training, where the generator and discriminator are 
trained adversarially for 8 epochs, followed by 5 epochs of 
generator pre-training steps repeated, then 5 epochs of dis-
criminator pre-training steps. During each adversarial 
training epoch, the generator is updated with the “worker” 
loss calculated as the cosine similarity between its output 
and the training data, which is multiplied by the cross-en-
tropy loss between training targets and the leaked represen-
tation of the targets. Following the generator training dur-
ing each adversarial epoch, the discriminator is addition-
ally trained for 15 epochs, utilizing the same cross-entropy 
loss function from pre-training steps. Finally, each adver-
sarial training epoch ends with 5 more iterations, utilizing 
the same loss functions from pre-training, for both the gen-



 

 

erator and the discriminator. A graph displaying the adver-
sarial training losses for the LeakGAN generator worker 
sub-module is displayed in Figure 5. 

 

 

Figure 5: Adversarial training loss graph of the LeakGAN 
generator, showing the cross-entropy*cosine similarity 
loss over 80 adversarial training epochs 

Experiment Design 

Data Set 
The data set that we’re using is a corpus of song lyrics col-
lected from azlyrics.com, with 31 randomly selected songs 
from each of the musical artists: Stevie Wonder, David 
Bowie, Tool, Nine Inch Nails, Metallica, Black Sabbath, 
Jay-Z, and Frank Zappa. In total, the corpus includes lyrics 
for 248 total songs. The corpus was further processed to 
split the data into a train and a test set. To ensure an even 
distribution of both musical artists and songs in both sets, 
the data was sequentially split, after first removing all du-
plicate entries to ensure that the same sentence was not in-
advertently included in both sets. In total, the data set con-
sists of 7,842 unique sentences, with an even split between 
training and testing sets, with 3,921 sentences each. Each 
sentence in this set contains 7.42 words on average, and to 
approximately match this we set parameters in the models 
to generate a maximum length of 10 words per sentence.  
  In regard to word makeup of the data corpus, the set 
consists of 6,411 unique tokens in total, with the training 
set containing 4,317 unique tokens and the testing set con-
taining 4,294 unique tokens. Based on this makeup of 
unique tokens counts, it can be estimated that approxi-
mately 1,050 unique tokens included in the training set are 
not seen in the testing set, and vice versa for 1,050 unique 
tokens in the testing set that are not seen in the training set. 
Since this difference in unique tokens accounts for approx-
imately 24% of each training and testing set, there may be 
poor evaluation performance relative to evaluation results 
from literature that utilize data sets approximately 50-10 
times larger (because we assume that a larger data set over-
all would result in a smaller percentage of tokens unique to 
each of the training and testing sets). This would be be-
cause evaluation of a model would be based partly on to-
kens that the language model has never encountered. 
Though we expect that the actual quality of generated text 
won’t be significantly impacted by this issue with the cor-
pus.  

Evaluation Methods 
For evaluation of the models, we will primarily utilize hu-
man evaluation of individual sentences. In similar experi-
ments (Yu, et al. 2017, Guo, et al. 2017) with evaluation of 
text generation models, human evaluation was conducted 
with Turing tests, utilizing human subjects to score a 1 for 
samples that they believe to be real, and 0 for samples that 
they believe to be machine generated. For this experiment, 
two human evaluators will evaluate each sample with a 
score of between 1 and 5 for coherence and grammar. To 
ensure there is no bias in the evaluation, each evaluator is 
shown each example in a randomized order, with no infor-
mation identifying the source model of the text. The evalu-
ation scores are defined as: 
 

1: example contains no real words 
2: example contains some real words but lacks structure 

or meaning 
3: example contains some real words and has some 

meaning (such as, contains a subject and a verb) 
4: example contains all real words, but lacks some co-

herence and meaning 
5: example contains all real words, and seems like it 

could be a real song lyric 

Because the corpus is made of song lyrics, each sample 
doesn’t need to be a full sentence, so this evaluation will 
largely consider whether the generated sample would make 
sense as a song lyric (even one- or two-word statements are 
acceptable, such as examples from the testing corpus 
which would receive a score of 5: “Right”, “Goblin girl”, 
“Attack”). And finally, the mean of both human annotated 
scores will be calculated for the final combined score. The 
best-performing model will be identified as the one with 
the highest mean score.  

In the case of a tiebreaker being necessary with the hu-
man evaluation scores, we also computed bilingual evalua-
tion understudy (BLEU) for the generated text from each 
model. BLEU calculates the n-gram similarity between a 
sentence and a set of reference texts, where a score of 1 is a 
perfect match in n-gram similarity. While, as (Tatman 
2019) notes, BLEU doesn’t account for meaning nor sen-
tence structure, we believe that using these scores in addi-
tion to human evaluation (and only as a tiebreaker between 
models), is a reasonable use of BLEU. Similar to the evalu-
ation method utilized in (Yu, et al. 2017, Zhang, et al. 
2017) we will use the entire test set as a reference corpus. 
For each sentence in the text output of each model, the in-
dividual sentence BLEU score is calculated, and the sum of 
the calculated scores are then averaged to yield the score 
for each model. This was done for BLEU-1, BLEU-2, 
BLEU-3, and BLEU-4 scores to yield the 1-gram, 2-gram, 
3-gram, and 4-gram similarity between the generated text 
and reference corpus. While we are reporting all BLEU n-
gram scores of 1 through 4, we will utilize BLEU-3 as the 



 

 

score to use in case of a tiebreaker needed from the human 
evaluation results. We selected BLEU-3 because we be-
lieve this n-gram balance is fitting for a sequence length of 
10 (where 2-grams may not be able to capture semantic re-
lationships well enough, and 4-grams may be too sparse 
within the training and generated texts to achieve a mean-
ingful comparison between models).  

Results and Conclusions 

Generated Examples 
Figure 6 shows examples of unconditional generated text 
output from the trained models. Each of the seven samples 
for each model was randomly selected from the model out-
puts. It appears that the baseline RNN does not tend to gen-
erate real English words, while the RNN with tuned hy-
perparameters does much better (but still generates words 
that are not real). The GAN models all appear to perform 
fairly well with unconditional text generation of real 
words. In regard to generation of meaningful text, the out-
put of both RNN models seem to lack coherence, while the 
GAN models do much better in generating text that could 
be interpreted as a genuine song lyric (though these models 
do still generate some lines that are incomprehensible). 
 

 

Figure 6: Randomly selected samples of generated text 
sequences from each trained model 

Model Evaluation Results 
In our primary evaluation of the models, utilizing a human 
evaluation score, each of the alternative models performed 
significantly better than the baseline RNN. These evalua-
tion scores are displayed in Figure 7. The SeqGAN model 
was evaluated to be the best, and no tiebreaker was neces-
sary for utilizing the BLEU scores. In general, the human 
evaluation scores for the GAN models were higher than the 
RNN models, so we may conclude that these models do 
generate more meaningful text with unconditional genera-
tion. The SeqGAN performed the best, though not by a 
large margin compared to the other GAN models trained 
and evaluated.  
 While we aren’t utilizing the BLEU scores for evalua-
tion, since no tiebreaker was needed, they are also dis-
played in Figure 7, for each of the n-gram similarity calcu-
lations of BLEU-1 through BLEU-4. One observation from 
these BLEU scores is that the higher-scoring model 
changes depending on the n-gram metric utilized, and that 
there aren’t large differences in scores between the models, 
especially for the3-gram and 4-gram evaluations. There-
fore, it seems inconclusive whether the BLEU metric is 
useful for a meaningful evaluation of unconditionally gen-
erated text. 
 

 

Figure 7: Display of evaluation results for baseline and al-
ternative models. The primary evaluation method (human 
evaluated with a metric) is shaded. The best score for 
each metric is in bold. 

Future Work 
While the alternative models that we trained and evaluated 
did outperform the baseline model, the generated text from 
these models still seemed to lack in quality and coherence. 
Therefore, we have identified a couple of priorities for fu-
ture work that could improve the quality of these models. 
First, we would like to utilize a larger corpus of data, be-
cause we were limited in the corpus size by the computing 
resources available and were only able to utilize a corpus 
containing 7,842 sequences of text. In comparison, many 
examples in literature, such as (Zhang, et al. 2017), utilize 
a corpus of 50,000+ sentences. So, we would expect that 
the quality of the output from our models would signifi-
cantly improve with a much larger corpus. Second, we 
were limited in how much time was available for hyperpa-
rameter fine-tuning. Therefore, we believe that further fine-
tuning of hyperparameters could boost the output quality of 
these models. For future fine tuning we would use exhaus-
tive grid search which would allow us to use every combi-
nation of parameters. With the exhaustive grid search 



 

 

method, we could use a metric like cross-validation to de-
termine which combination of parameters would produce 
the best model. This would be an improvement on the tech-
nique of manual parameter tuning that we performed for 
this project. 
 A further consideration for future work would be to fur-
ther evaluate these models with consideration for how 
much computing resources they take to train. We infor-
mally observed that most of the GAN models took signifi-
cantly longer to train than the RNN models, and that there 
was some variation in how long each particular model 
took. And while the output of the GAN models does seem 
to be higher in quality, it would be interesting to further an-
alyze the quality of the models relative to the resources re-
quired to train them. 
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