

Comparison of Deep Learning Text
Generation Models Trained with Song Lyrics

Nathan Stone, Zack Strathe
Kansas State University

CIS 732

Introduction
For intelligent-systems to interact with humans, natural
language is the method accessible to most of the world’s
population. For that reason, text generation is a very im-
portant, though also very difficult problem in machine
learning. Several different methods of text generation exist,
but finding nonsensical results can be commonplace. Cur-
rently, state-of-the-field in natural language processing
(NLP) is the use of large language models (LLMs) such as
OpenAI’s GPT-3 or Google’s BERT, which do perform
well at most natural language processing (NLP) tasks;
however, these LLMs do pose some concerning downsides
with their use. The largest concern for LLMs is the intro-
duction of bias into the model due to the extremely large
corpus used for training. For instance, GPT-3 was trained
on the Common Crawl Dataset, which includes documents
linked to from Reddit, Wikipedia articles, and a collection
of books. With such a large corpus, there may inevitably be
some level of biased viewpoints being expressed which
could show up in the outputs from the trained model
(Bender, et al. 2021). While unintentional bias isn’t a ma-
jor concern for a small-scale student project, it is worth
some consideration, and we believe that this ethical issue
of bias in LLMs presents an opportunity to evaluate the
performance of small language models that have been
trained on a custom corpus. In addition, utilizing small lan-
guage models allows us to explore some novel methods of
developing text generation models that have been the focus
of recent research in NLP.

For this project, we intend to experiment with training
language models with a dataset of song lyrics from differ-
ent artists. As a baseline, we will implement and train a re-
current neural network (RNN) with long short-term
memory (LSTM) and maximum likelihood estimation
(MLE). In comparison to this baseline model, we will de-
velop a similar RNN with LSTM, but with hyperparameter
tuning in an attempt to improve evaluation results. Further,
we will utilize the TextBox (Li, et al. 2021) module–
which has implemented a framework for training and eval-
uating a large number of different language models– to
train and evaluate a few different generative adversarial

network (GAN) text generation models. Our analysis will
include evaluation of the models using both a human-scor-
ing method and a computed score. With the selected set of
song lyrics that we will use for training and evaluation, we
hope to see that the models incorporate different themes in
language usage (such as word choice pertaining to certain
topics) that are found in the corpus. For instance, our cor-
pus includes lyrics from Stevie Wonder, which generally
contains upbeat themes (example lyric: “Love’s in need of
love today”), but also includes lyrics from Metallica, which
tend to have a much darker tone in general word usage (ex-
ample lyric: “Rule the midnight air, the destroyer”). While
previous research into model-based generation of song lyr-
ics (Potash, Romanov and Rumshisky 2015) has explored
developing a metric utilizing inverse document frequency
to compare a generated lyric’s similarity to a specific artist,
our evaluation will instead utilize a much simpler metric.
For human-evaluation, we will look at the semantic mean-
ing of the generated text (answering “does it make
sense?”), as well as evaluating the grammatical correctness
of the generated text. For computer calculated scores, we
will utilize the BLEU evaluation, which compares the n-
gram similarity between the generated text and an evalua-
tion corpus.

Background and Related Work

Previous Work into Artificial Lyric Generation
In their paper “GhostWriter: Using an LSTM for Auto-
matic Rap Lyric Generation” (Potash, Romanov and
Rumshisky 2015) a group from the University of Massa-
chusetts Lowell utilized a RNN with LSTM architecture to
artificially generate rap lyrics. This research sought to not
only generate lyrics, but to generate the structure of lyrics,
taking into account rhyme scheme and similarity to a target
rap artist. The results of this paper present promising re-
sults of utilizing a RNN-LSTM model for the generation of
novel lyrics that are similar in style to a reference corpus.

Recurrent Neural Networks
RNNs and LSTMs have seen implementation in text gener-
ation tasks previously, which led us to choose LSTMs for

this project. Due to its previous implementations for song
lyrics, and being a simpler network structure, we decided
to use an LSTM for our baseline model. We also decided
to tune the parameter further from the baseline model to
see if we get better results. LSTMs also solve the vanishing
error problem present in traditional RNNs (Staudemeyer
and Morris 2019). LSTMs work by taking in a vector of
word encodings from the corpus and using probabilistic
prediction to guess what the next character in the sequence
will be. We choose LSTMs over other RNN architectures
due to the memory cell present in LSTMS with the hopes
that it would produce more convincing and meaningful
song lyrics as the memory cell can hold past information
longer than a traditional RNN. The memory cell has sev-
eral important features including input gates, output gates,
forget gates, and the cell memory (Potash, Romanov and
Rumshisky 2015). The input gates use a sigmoid activation
function to control the signals that are sent to the cell
memory while the output gates learn how to control access
to the memory cell contents (Staudemeyer and Morris
2019). The forget gate is attached to the self-connection in
the cell to adjust weights when the stored information is no
longer needed (Staudemeyer and Morris 2019). For our
RNN LSTM implementations we utilized Keras packages
with more detailed explanation below in the Methodology
section of this report. For both of the RNN implementa-
tions, cross-entropy loss was used. The formula for the
cross-entropy loss is calculated after the SoftMax layer and
is calculated with this formula:

Generative Adversarial Models (GANs)
The usage of GANs has emerged as a means to alleviate
what is known as “exposure bias” in RNN networks, which
is a result of the model being trained to predict a word,
given a sequence of ground truth words, but at the infer-
ence stage, being instead provided with the previous se-
quence of words generated by the model. As a result of the
exposure bias, errors quickly accumulate during the infer-
ence stage, so that a generated sentence may initially seem
reasonable, but will quickly start to deteriorate as sentence
length increases (Yu, et al. 2017, Zhang, et al. 2017). By
utilizing elements from reinforcement learning, GANs can
alleviate exposure bias in text generation tasks.

With GANs, two models are utilized that are trained ad-
versarially: a discriminator, which is trained to recognize
whether a data example is real or not, and a generator,
which is trained to generate synthetic data with the goal to
trick the discriminator into believing that it is real (Yu, et
al. 2017). The objective of training a GAN is to train a gen-
erator that “functionally maps samples from a given (sim-
ple) prior distribution, to synthetic data that appear to be
realistic” (Zhang, et al. 2017). In computer vision tasks,

GANs have been very successful, with state-of-the-field
image generation algorithms that are capable of creating
artificial images indistinguishable from a photo. However,
text generation is different from image generation in sev-
eral ways, but primarily: text generation deals in sequences
of discrete tokens, while image generation deals with real-
valued, continuous data (Yu, et al. 2017). In a traditional
GAN, the loss can be calculated between the output of the
discriminator and the generator output to yield the gradient
for updating the parameter weights of the generator. How-
ever, with discrete sequences like text, a parameter update
with respect to a gradient determined from the discrimina-
tor output doesn’t make any sense because there is “proba-
bly no corresponding token for such slight change in the
limited dictionary space” (Yu, et al. 2017).

SeqGAN (Yu, et al. 2017)

 With SeqGAN, the authors decided to consider text se-
quence generation as a sequential decision-making process.
In this implementation, the generative model is essentially
a policy-based reinforcement learning agent, utilizing a
RNN with LSTM cells.

The generator directly trains a stochastic parameterized
policy via a policy-gradient method, and utilizes a Monte
Carlo search to approximate the state-action values. The
environment state at each step is the generated sequence of
tokens so far, and the action is the next token in the se-
quence to be generated. The reward values are estimated as
the likelihood that the generator will trick the discriminator
with a synthetic sample that the discriminator evaluates to
be real. The discriminator is a convolutional neural net-
work (CNN) which evaluates every completed sequence of
generated tokens. The last layer of the CNN is fully-con-
nected with sigmoid activation and outputs the probability
that the sequence is real. The output of the discriminator is
then used to guide training of the generator.

For training of the SeqGAN model, the generator is first
pre-trained using MLE estimation on a training data set.
Next, the discriminator is also pre-trained, by minimizing
cross-entropy with negative samples from the pre-trained
generator and positive samples from the training data set.
Afterward, the RNN-LSTM generator and CNN discrimi-
nator are alternatively trained. The generator is trained for
g-steps, while the discriminator is periodically trained for
d-steps. At each iteration of the discriminator training loop
(d-steps), the discriminator is trained to classify using real-
data from the training set versus fake data from the genera-
tor, with an equal balance between positive and negative
examples. During adversarial training, the generator is up-
dated by minimizing cross-entropy loss, utilizing the func-
tion:

where “y is the ground truth label of the input sequence,
and y-hat is the predicted probability from the discrimina-
tive model” (Yu, et al. 2017).

TextGAN (Zhang, et al. 2017)

In their paper detailing TextGAN, the author’s note their
motivations for building upon the techniques implemented
with SeqGAN. First, they note that “mode collapse”, where
a generator tends to produce a single output for multiple la-
tent representations (encoded text), is an issue with text
generation GANs such as SeqGAN. Second, they note the
vanishing gradient problem that exists for a generator when
the discriminator is close to its local optimum. To alleviate
these problems, the TextGAN authors set out to utilize a
feature-matching approach to train the generator, instead of
directly optimizing the objective as with a standard GAN
approach. Rather than the objective of generator training
being increasing the probability of the discriminator being
fooled by synthetic data, they instead train the generator to
more-closely produce a synthetic sentence that matches an
encoding from the discriminator. In this model, the dis-
criminator attempts to “produce sentence features that are
most discriminative, representative and challenging”
(Zhang, et al. 2017). Essentially, the adversarial loop with
training TextGAN is that the discriminator attempts to
identify most-informative sentence features, while the gen-
erator attempts to match those identified features.

The model architecture of TextGAN is similar to Se-
qGAN, utilizing a RNN-LSTM generator and a CNN dis-
criminator. The discriminator essentially acts as a feature
detector, convolving over the text sequence to produce a
latent feature map, which is fed to a max-over-time pooling
layer to determine a filter particular to a certain feature.
This filter is then convolved over every position of the sen-
tence, allowing features to be extracted regardless of posi-
tion in the sentence. The model uses multiple filters with
varying window sizes for extracting these features. The
RNN-LSTM generator of the TextGAN model is trained to
convert an encoded feature vector into a synthetic sen-
tence. The first word of the generator sentence is determin-
istically generated from the encoded feature vector, with
the remaining words sequentially generated with the RNN.

For training with TextGAN, the generator is first pre-
trained using a CNN-LSTM autoencoder. For discrimina-
tor pretraining, the authors utilize a method of “permuta-
tion training,” where for each sentence in the training cor-
pus, two words are randomly swapped, to create a slightly
different example for the discriminator to pre-train to clas-
sify real versus synthetic data. The authors claim that the
permutation pre-training is necessary because it “requires
the discriminator to learn features characteristic of sen-
tences’ long dependencies” (Zhang, et al. 2017). For the
generator, TextGAN utilizes the loss function:

, where MMD is the maximum mean discrepancy “be-
tween the empirical distribution of sentence embed-
dings…for synthetic and real data” (Zhang, et al. 2017).

LeakGAN (Guo, et al. 2017)

The authors of the LeakGAN method note that, while re-
cent GAN methods have been fairly successful in the gen-
erative text domain–especially with treating text generation
as a sequential decision-making stochastic policy-gradient
method– there is a lack of research into text generation of
longer form (more than 20 words). They claim that longer
form text generation is necessary for “practical tasks such
as auto-generation of news articles or product descriptions”
(Guo, et al. 2017). They also note that the main drawbacks
of other GAN-based text generation methods such as Se-
qGAN for longer-form text, is that the binary signal from
the discriminator is sparse because it is only generated
from the full-length sequence, and that the signal is not in-
formative enough for the generator to sufficiently learn for
longer-sequence data, as the discriminator signal does not
preserve syntactic structure or semantics of the text. As
such, the authors propose some novel methods with
LeakGAN to attempt to address these problems.
 To deal with the problems of sparse and uninformative
reward signals, LeakGAN utilizes elements of hierarchical
reinforcement learning (RL). In this model, the generator is
split into a high-level “manager” module and a low-level
“worker” module. The discriminator for this model utilizes
a CNN similar to other text-generation GAN models; how-
ever, unlike other GANs researched for this report, the
CNN discriminator in LeakGAN serves primarily as a fea-
ture-extractor, where information from the last layer of the
CNN is “leaked” to the generator. The authors claim this to
be a much better guiding signal for the generator, “since it
tells what the position of currently-generated words is in
the extracted feature space” (Guo, et al. 2017). For the gen-
erator function, hierarchical RL methods are utilized,
where the “manager” is a LSTM network that receives the
feature vector input from the discriminator, and outputs a
goal-vector to the “worker”, another LSTM module, as a
guiding signal for training.
 For training, LeakGAN utilizes pre-training of the gen-
erator: the “manager” LSTM is pre-trained to distinguish
the transition of real text samples in the feature space,
while the “worker” LSTM is pre-trained with maximum
likelihood estimation. Following pre-training, the generator
and discriminator are alternatively trained, with the “man-
ager” and “worker” networks also being alternatively
trained for every generator training step. The overall goal
in training LeakGAN is to generate a gradient from the
manager to update the worker model weights. The genera-
tor update gradient is defined as:

, where 𝑄ி(𝑠௧ , 𝑔௧) is the estimated reward of the current
policy, which is estimated with Monte Carlo search. 𝑑௖௢௦
“represents the cosine similarity between represents the co-

sine similarity between the change of feature representa-
tion, after c-step transitions, and the goal vector 𝑔௧(𝜃௠)”
(Guo, et al. 2017).

Methodology
To conduct the experiment of evaluating different models
for unconditional text generation, we knew that we would
need to use GPU-enabled computing resources, as all of
these text generation models utilize deep neural networks,
which are significantly faster to train with a GPU since
deep learning utilizes parallel matrix multiplication opera-
tions which a GPU is capable of handling. Accordingly, we
chose to utilize the Google Colab platform for the imple-
mentation of this project because it offers free access to a
GPU. One downside to the Google Colab platform is that
there is a limit to how long it will allow a process to run. A
problem that we frequently encountered was a model-train-
ing process being terminated before it could complete. As
such, to be able to complete these experiments, we had to
limit the corpus text size so that model training and evalua-
tion could be completed within the limitations of the
Google Colab platform.

Models

Baseline RNN implementation

For the baseline model we used Keras to develop a simple
LSTM using the Keras sequential model feature. The
model has 2 layers to it, an LSTM layer with 128 units and
a dense layer with a SoftMax activation function. The
model was then compiled with a categorical cross entropy
loss function and Adam optimizer. This model is trained
for 40 epochs with a batch size of 128. We used a se-
quence length of 10 for the baseline with the corpus length,
number of characters, and number of patterns being deter-
mined by the data we used. The data we used for both of
the RNN LSTM models was the training data that was used
to train the generator for the GAN to allow for a better
comparison of results.

Figure 1: Training loss graph of the baseline RNN
with LSTM cells over 40 training epochs

Tuned RNN implementation

For the tuned model, we used Keras sequential model
again with 3 layers. We used an LSTM layer with 256
units, a dropout layer with a dropout rate of 0.2, and a
dense layer with a SoftMax activation function. This model
was also compiled with a categorical cross-entropy loss
function and Adam optimizer. We changed the sequence
length on this model from 10 on the baseline to 120 so the
model would be able to capture much larger sequences of
characters. We tried sequence lengths of 40, 80, 100, and
120 and 120 was able to learn more about the structure and
patterns from the training data so we continued with that.
For this model we also changed the scale factor or temper-
ature from what seems to be the default of 1.0 to 0.2. We
tested the temperature at 0.2, 0.35, 0.5, 1.0 and 1.2 and de-
cided to move forward with 0.2 as it produced more con-
vincing song lyrics. With this lowered temperature, the
model was less willing to make mistakes with its genera-
tion. For this model we trained for 80 epochs with a batch
size of 128. We increased the epochs the model was
trained on to lower the loss value and for the model to
learn to produce better song lyrics by learning more pat-
terns in the training corpus. We did notice that training on
too many epochs (about 120) the loss value began to in-
crease significantly.

Figure 2: Training loss graph of the RNN with LSTM
cells and tuned hyperparameters over 80 training epochs

GAN Implementations

We implemented the GAN models (SeqGAN, TextGAN,
and LeakGAN) for this report with the Python module
TextBox (Li, et al. 2021) which is a PyTorch based text
generation framework developed by a group from Renmin
University of China. We chose to use this module because
it has implemented many GAN models for text generation
uses, and also has implemented multiple evaluation
measures. We slightly modified this module for these ex-
periments, to save training loss logs and evaluation scores
to .csv files.

To use a custom data set with the TextBox module, it
needs to be split into three files: a train file, a test file, and
an evaluation file. Because we are utilizing unconditional
text generation, we do not need a testing file with labeled
data (but it is required for the TextBox library to function),
so the test and evaluation files for our song lyrics corpus
are identical.

The model training steps for each model utilized from
the TextBox module is as follows (Li, et al. 2021):

SeqGAN

In the TextBox module’s implementation of SeqGAN, the
generator is first pre-trained for 80 epochs, where it utilizes
cross-entropy loss between the generated output and the
target sequence for updating parameter weights. The dis-
criminator is then pre-trained for 50 epochs, where it up-
dates parameter weights by evaluating both real and fake
data, then calculates the average cross-entropy loss of the
predictions for both the real and fake data. Last, the model
is trained adversarially for 80 epochs, where the generator
is updated utilizing the cross-entropy loss between the
ground truth label of the input sequence and the predicted
probability of the generator being able to trick the discrimi-
nator (to classify a generated sample as real). During each
epoch of adversarial training, the discriminator is trained
for an additional 5 epochs, again utilizing cross-entropy
loss with real and fake data. A graph displaying the adver-
sarial training losses for the SeqGAN generator is dis-
played in Figure 3.

Figure 3: Adversarial training loss graph of the SeqGAN
generator, showing cross-entropy loss over 80 adversarial
training epochs

TextGAN

In the TextBox module’s implementation of TextGAN, the
generator is first pre-trained for 80 epochs, where it utilizes
cross-entropy loss between the generated output and the
target sequence for updating parameter weights. The dis-
criminator is then pre-trained for 50 epochs, where it up-
dates parameter weights by evaluating both real and fake
data, then calculates the average cross-entropy loss of the
predictions for both the real and fake data, then addition-
ally calculates and adds maximum mean discrepancy and
reconstructed loss for the feature encoder. The discrimina-
tor loss is also regularized with L2 normalization. Last, the
model is trained adversarially for 80 epochs, where the

generator is updated utilizing the maximum mean discrep-
ancy (MMD), which “measures the mean squared differ-
ence between two sets of samples” (Zhang, et al. 2017),
between the ground truth label of the input sequence and
the generated sequence. During each epoch of adversarial
training, the discriminator is trained for an additional 5
epochs, again utilizing cross-entropy loss with real and
fake data, plus maximum mean discrepancy and recon-
struction loss. A graph displaying the adversarial training
losses for the TextGAN generator is displayed in Figure 4,
where the generator attempts to minimize the MMD be-
tween generated and real data.

Figure 4: Adversarial training loss graph of the TextGAN
generator, showing maximum mean discrepancy over 80
adversarial training epochs

LeakGAN

In the TextBox module’s implementation of LeakGAN, the
generator is first pre-trained for 80 epochs, where the
“manager” and “worker” sub-modules are each updated.
The manager sub-module calculates cosine similarity loss
between its hidden state output and the real features. The
worker sub-module is updated during each pre-training
epoch with the cross-entropy loss between training targets
and the “leaked” representation from the discriminator
model. The discriminator is then pre-trained for 50 epochs,
where it updates parameter weights by evaluating both real
and fake data, then calculates the average cross-entropy
loss of the predictions for both the real and fake data which
is regularized with L2 normalization. Last, the model is
trained adversarially for 10 epochs of interleaved adversar-
ial training, where the generator and discriminator are
trained adversarially for 8 epochs, followed by 5 epochs of
generator pre-training steps repeated, then 5 epochs of dis-
criminator pre-training steps. During each adversarial
training epoch, the generator is updated with the “worker”
loss calculated as the cosine similarity between its output
and the training data, which is multiplied by the cross-en-
tropy loss between training targets and the leaked represen-
tation of the targets. Following the generator training dur-
ing each adversarial epoch, the discriminator is addition-
ally trained for 15 epochs, utilizing the same cross-entropy
loss function from pre-training steps. Finally, each adver-
sarial training epoch ends with 5 more iterations, utilizing
the same loss functions from pre-training, for both the gen-

erator and the discriminator. A graph displaying the adver-
sarial training losses for the LeakGAN generator worker
sub-module is displayed in Figure 5.

Figure 5: Adversarial training loss graph of the LeakGAN
generator, showing the cross-entropy*cosine similarity
loss over 80 adversarial training epochs

Experiment Design

Data Set
The data set that we’re using is a corpus of song lyrics col-
lected from azlyrics.com, with 31 randomly selected songs
from each of the musical artists: Stevie Wonder, David
Bowie, Tool, Nine Inch Nails, Metallica, Black Sabbath,
Jay-Z, and Frank Zappa. In total, the corpus includes lyrics
for 248 total songs. The corpus was further processed to
split the data into a train and a test set. To ensure an even
distribution of both musical artists and songs in both sets,
the data was sequentially split, after first removing all du-
plicate entries to ensure that the same sentence was not in-
advertently included in both sets. In total, the data set con-
sists of 7,842 unique sentences, with an even split between
training and testing sets, with 3,921 sentences each. Each
sentence in this set contains 7.42 words on average, and to
approximately match this we set parameters in the models
to generate a maximum length of 10 words per sentence.
 In regard to word makeup of the data corpus, the set
consists of 6,411 unique tokens in total, with the training
set containing 4,317 unique tokens and the testing set con-
taining 4,294 unique tokens. Based on this makeup of
unique tokens counts, it can be estimated that approxi-
mately 1,050 unique tokens included in the training set are
not seen in the testing set, and vice versa for 1,050 unique
tokens in the testing set that are not seen in the training set.
Since this difference in unique tokens accounts for approx-
imately 24% of each training and testing set, there may be
poor evaluation performance relative to evaluation results
from literature that utilize data sets approximately 50-10
times larger (because we assume that a larger data set over-
all would result in a smaller percentage of tokens unique to
each of the training and testing sets). This would be be-
cause evaluation of a model would be based partly on to-
kens that the language model has never encountered.
Though we expect that the actual quality of generated text
won’t be significantly impacted by this issue with the cor-
pus.

Evaluation Methods
For evaluation of the models, we will primarily utilize hu-
man evaluation of individual sentences. In similar experi-
ments (Yu, et al. 2017, Guo, et al. 2017) with evaluation of
text generation models, human evaluation was conducted
with Turing tests, utilizing human subjects to score a 1 for
samples that they believe to be real, and 0 for samples that
they believe to be machine generated. For this experiment,
two human evaluators will evaluate each sample with a
score of between 1 and 5 for coherence and grammar. To
ensure there is no bias in the evaluation, each evaluator is
shown each example in a randomized order, with no infor-
mation identifying the source model of the text. The evalu-
ation scores are defined as:

1: example contains no real words
2: example contains some real words but lacks structure

or meaning
3: example contains some real words and has some

meaning (such as, contains a subject and a verb)
4: example contains all real words, but lacks some co-

herence and meaning
5: example contains all real words, and seems like it

could be a real song lyric

Because the corpus is made of song lyrics, each sample
doesn’t need to be a full sentence, so this evaluation will
largely consider whether the generated sample would make
sense as a song lyric (even one- or two-word statements are
acceptable, such as examples from the testing corpus
which would receive a score of 5: “Right”, “Goblin girl”,
“Attack”). And finally, the mean of both human annotated
scores will be calculated for the final combined score. The
best-performing model will be identified as the one with
the highest mean score.

In the case of a tiebreaker being necessary with the hu-
man evaluation scores, we also computed bilingual evalua-
tion understudy (BLEU) for the generated text from each
model. BLEU calculates the n-gram similarity between a
sentence and a set of reference texts, where a score of 1 is a
perfect match in n-gram similarity. While, as (Tatman
2019) notes, BLEU doesn’t account for meaning nor sen-
tence structure, we believe that using these scores in addi-
tion to human evaluation (and only as a tiebreaker between
models), is a reasonable use of BLEU. Similar to the evalu-
ation method utilized in (Yu, et al. 2017, Zhang, et al.
2017) we will use the entire test set as a reference corpus.
For each sentence in the text output of each model, the in-
dividual sentence BLEU score is calculated, and the sum of
the calculated scores are then averaged to yield the score
for each model. This was done for BLEU-1, BLEU-2,
BLEU-3, and BLEU-4 scores to yield the 1-gram, 2-gram,
3-gram, and 4-gram similarity between the generated text
and reference corpus. While we are reporting all BLEU n-
gram scores of 1 through 4, we will utilize BLEU-3 as the

score to use in case of a tiebreaker needed from the human
evaluation results. We selected BLEU-3 because we be-
lieve this n-gram balance is fitting for a sequence length of
10 (where 2-grams may not be able to capture semantic re-
lationships well enough, and 4-grams may be too sparse
within the training and generated texts to achieve a mean-
ingful comparison between models).

Results and Conclusions

Generated Examples
Figure 6 shows examples of unconditional generated text
output from the trained models. Each of the seven samples
for each model was randomly selected from the model out-
puts. It appears that the baseline RNN does not tend to gen-
erate real English words, while the RNN with tuned hy-
perparameters does much better (but still generates words
that are not real). The GAN models all appear to perform
fairly well with unconditional text generation of real
words. In regard to generation of meaningful text, the out-
put of both RNN models seem to lack coherence, while the
GAN models do much better in generating text that could
be interpreted as a genuine song lyric (though these models
do still generate some lines that are incomprehensible).

Figure 6: Randomly selected samples of generated text
sequences from each trained model

Model Evaluation Results
In our primary evaluation of the models, utilizing a human
evaluation score, each of the alternative models performed
significantly better than the baseline RNN. These evalua-
tion scores are displayed in Figure 7. The SeqGAN model
was evaluated to be the best, and no tiebreaker was neces-
sary for utilizing the BLEU scores. In general, the human
evaluation scores for the GAN models were higher than the
RNN models, so we may conclude that these models do
generate more meaningful text with unconditional genera-
tion. The SeqGAN performed the best, though not by a
large margin compared to the other GAN models trained
and evaluated.
 While we aren’t utilizing the BLEU scores for evalua-
tion, since no tiebreaker was needed, they are also dis-
played in Figure 7, for each of the n-gram similarity calcu-
lations of BLEU-1 through BLEU-4. One observation from
these BLEU scores is that the higher-scoring model
changes depending on the n-gram metric utilized, and that
there aren’t large differences in scores between the models,
especially for the3-gram and 4-gram evaluations. There-
fore, it seems inconclusive whether the BLEU metric is
useful for a meaningful evaluation of unconditionally gen-
erated text.

Figure 7: Display of evaluation results for baseline and al-
ternative models. The primary evaluation method (human
evaluated with a metric) is shaded. The best score for
each metric is in bold.

Future Work
While the alternative models that we trained and evaluated
did outperform the baseline model, the generated text from
these models still seemed to lack in quality and coherence.
Therefore, we have identified a couple of priorities for fu-
ture work that could improve the quality of these models.
First, we would like to utilize a larger corpus of data, be-
cause we were limited in the corpus size by the computing
resources available and were only able to utilize a corpus
containing 7,842 sequences of text. In comparison, many
examples in literature, such as (Zhang, et al. 2017), utilize
a corpus of 50,000+ sentences. So, we would expect that
the quality of the output from our models would signifi-
cantly improve with a much larger corpus. Second, we
were limited in how much time was available for hyperpa-
rameter fine-tuning. Therefore, we believe that further fine-
tuning of hyperparameters could boost the output quality of
these models. For future fine tuning we would use exhaus-
tive grid search which would allow us to use every combi-
nation of parameters. With the exhaustive grid search

method, we could use a metric like cross-validation to de-
termine which combination of parameters would produce
the best model. This would be an improvement on the tech-
nique of manual parameter tuning that we performed for
this project.
 A further consideration for future work would be to fur-
ther evaluate these models with consideration for how
much computing resources they take to train. We infor-
mally observed that most of the GAN models took signifi-
cantly longer to train than the RNN models, and that there
was some variation in how long each particular model
took. And while the output of the GAN models does seem
to be higher in quality, it would be interesting to further an-
alyze the quality of the models relative to the resources re-
quired to train them.

References
Bender, M Emily, Timnit Gebru, Angelina McMillan-

Major, and Schmargaret Schmitchell. 2021. "On
the Dangers of Stochastic Parrots: Can Language
Models Be Too Big? ⤣⤤⤥⤦⤧⤨⤩⤪⤫." 2021 ACM Conference
on Fairness, Accountability, and Transparency
(FAccT '21). New York, NY: Association for
Computing Machinery. 610-623.

Guo, Jiaxian, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu,
and Jun Wang. 2017. "Long Text Generation via
Adversarial Training with Leaked Information."
December 8. Accessed March 15, 2022.
https://arxiv.org/abs/1709.08624.

Li, Junyi, Tianyi Tang, Gaole He, Jinhao Jiang, Xiaoxuan
Hu, Puzhao Xie, Zhipeng Chen, Zhuohao Yu,
Wayne Xin Zhao, and Ji-Rong Wen. 2021.
"TextBox: A Unified, Modularized, and
Extensible Framework for Text Generation."
April 19. Accessed February 22, 2022.
https://arxiv.org/abs/2101.02046.

Potash, Peter, Alexey Romanov, and Anna Rumshisky.
2015. "GhostWriter: Using an LSTM for
Automatic Rap Lyric Generation." Proceedings of
the 2015 Conference on Empirical Methods in
Natural Language Processing, September: 1919-
1924.

Staudemeyer, Ralf C, and Eric Rothstein Morris. 2019.
"Understanding LSTM -- a tutorial into Long
Short-Term Memory Recurrent Neural
Networks." September 12. Accessed March 6,
2022. https://arxiv.org/abs/1909.09586.

Tatman, Rachael. 2019. Evaluating Text Output in NLP:
BLEU at your own risk. Towards Data Science.
January 15. Accessed April 23, 2022.
https://towardsdatascience.com/evaluating-text-
output-in-nlp-bleu-at-your-own-risk-
e8609665a213.

Yu, Lantao, Weinan Zhang, Jun Wang, and Yong Yu.
2017. "SeqGAN: Sequence Generative

Adversarial Nets with Policy Gradient." August
25. Accessed March 15, 2022.
https://arxiv.org/abs/1609.05473.

Zhang, Yizhe, Zhe Gan, Kai Fan, Zhi Chen, Ricardo
Henao, Dinghan Shen, and Lawrence Carin. 2017.
"Adversarial Feature Matching for Text
Generation." November 18. Accessed March 15,
2022. https://arxiv.org/abs/1706.03850.

