
FEATURE EXTRACTION METHODS WITH MACHINE LEARNING

FOR SATELLITE IMAGE CLASSIFICATION

Zack Strathe

CIS 731



INTRODUCTION

• Satellite imagery has capability to track indicators, like deforestation, desertification, or general 
crop health

• With such a massive amount of data available, there exists a potential challenge in gathering 
meaningful insights

• Algorithms can be trained to classify satellite imagery, resulting in a model that could track 
fluctuations (i.e., when a classification changes)

• While state-of-the-art is a convolutional neural network, I’m implementing “classic” machine 
learning techniques to allow flexibility with feature extraction methods

2



DATA SET

• Images: 28x28 pixel, 4-band (red, green, blue, near-infrared), stored in .csv file as a flattened list for each 
image

• Each pixel sub-value represented by 0-255 color value

• Labels: one-hot-encoded corresponding to either barren land, trees, grassland, or other, stored in .csv file

• Labeling process: manually labeled 6,000 x 7,000 pixel tiles, then split into 28x28 samples using sliding window blocks

• Training set: 400,000 images & labels

• Testing set: 100,000 images & labels

• Source: Kaggle (https://www.kaggle.com/crawford/deepsat-sat4)

3

https://www.kaggle.com/crawford/deepsat-sat4


METHODOLOGY: PLATFORM

• Using PySpark for all steps:

• Load data, preprocess data, train classification model, evaluate classification model

• Cloud Computing

• Because of the large size of the dataset (~7 GB), I needed to utilize a VM

• from Google Cloud with a v16 CPU and 64 GB memory

• Also tested a AWS EMR notebook with a cluster consisting of 3 VMs, which performed better but was more costly 

• When using a single-VM, PySpark configuration settings should be set to fully utilize available resources

• Using SparkConf 

4



METHODOLOGY: DATA PREPROCESSING

• Initially, imported each .csv file as a PySpark dataframe, but convert to a RDD

• Using RDD format for ease of implementation, because a schema is not required

• Mapped X_train and X_test with functions to transform/extract image features

• Mapped Y_train and Y_test with function to convert one-hot-encoded labels into floats

• Performed feature selection on X_train and X_test with ChiSqSelector and Normalizer 
from MLlib

• Joined X_train and Y_train as a LabeledPoint, with X_train data formatted with the Mllib
Vectors class

• Required for Mllib RDD-based classification algorithms

5



FEATURE EXTRACTION METHODS

• Pixel-based transformations:

• Mean value for each pixel (excl. near-infrared value)

• Near-infrared value only

• Mean value & near-infrared value 

• OpenCV-based (global) transformations:

• Edge detection (cv2.Sobel)

• Hu Moments (cv2.HuMoments)

• Histogram (greyscale)

• Also tried combining each of these with original 
image data

6



EVALUATION METRIC

• Weighted F1 score:

• This problem is multiclass, so the trained model may exhibit classification bias

• Therefore, it’s ideal to utilize precision (ratio of true positives to total positives) 
and recall (ratio of true positives to the sum of true positives and false negatives)

• To maximize both precision and recall, use F1

• Harmonic mean of precision and recall

• Weighted-F1 aggregates over all classes

7



INITIAL EVALUATION OF MLLIB RDD-BASED ALGORITHMS 
USING UNMODIFIED IMAGE DATA

• Random Forest, Decision Tree, and Logistic Regression performed fairly well, and will 
be used to evaluate feature extraction methods

• While Logistic Regression had a substantially longer processing time, I’m assuming 
time to be insignificant (because a PySpark cluster could simply be scaled-out with 
additional workers when needed)

8



FEATURE EXTRACTION EVALUATION RESULTS (1/4):
RANDOM FOREST

9



FEATURE EXTRACTION EVALUATION RESULTS (2/4):
DECISION TREE

10



FEATURE EXTRACTION EVALUATION RESULTS (3/4):
LOGISTIC REGRESSION

11



FEATURE EXTRACTION EVALUATION RESULTS (4/4):
OVERALL

• Best performing model:
• Algorithm: Logistic Regression 
• Feature extraction method: Greyscale histogram 
• Weighted-F1 score: 0.93 

• Interesting observations: 
• Using greyscale histogram features, only the Logistic Regression 

algorithm was significantly improved
• Results from the Random Forest algorithm didn’t significantly 

improve with any feature extraction method

12



FEATURE SELECTION
FOR FURTHER MODEL IMPROVEMENT

• Evaluated best model (Logistic Regression with greyscale histogram for features) with:
• Normalize Features 

• Normalizes the features for each image
• Chi-Square Selection

• Selects the top number of features, using chi-squared test
• Evaluated with “top number” specified to 200 and 100

• Only normalizing features improved the evaluation results, boosting both precision and accuracy by 0.01

13



10-FOLD CROSS-VALIDATION (1/2):
AVG. WEIGHTED-F1 SCORE

• For cross-validation of best model, combined training and testing sets into a single RDD 
consisting of 500,000 images and labels

• Iterated through 10 unique seed values, used RDD.randomSplit() function to uniquely split 
data for each fold

• Cross-validated weighted-F1 score for improved model: 0.92

14



10-FOLD CROSS-VALIDATION (2/2):
PAIRED T-TEST

• Computed cross-validation metrics for baseline model
• Random Forest with unmodified image data
• Avg. weighted-F1 score: 0.82
• Saved weighted-F1 score of each fold

• Computed cross-validation metrics for best-model
• Saved weighted-F1 score of each fold

• Using SciPy ttest_rel function, computed paired t-test between baseline and improved 
model
• T-test statistic: -236.34
• P-value: 2.21e-18
• Because p < 0.05, conclude with 95% confidence to reject the null hypothesis

15



CONCLUSION

• Best model:
• Algorithm: Logistic Regression
• Feature extraction method: 

Greyscale histogram
• Feature selection: Normalize

• Improved weighted-F1 score from 0.81 
to 0.93

16



17



18



19



FUTURE WORK

• Attempt other histogram extraction techniques

• Full-color or near-infrared values instead

• Evaluate Mllib dataframe-based algorithms that I didn’t test

• Multilayer Perceptron Classifier, One-Vs-Rest Classifier, Factorization Machines Classifier

• Add many additional classification categories 

• Improve overall usability of model

• Example categories:

• Mountainous

• Water

• Clouds (to identify regions where clouds have obscured the image, and should have new 
imagery sourced)

20


