

Feature Extraction Techniques with Machine Learning

for Satellite Image Classification

Zack Strathe
Kansas State University – CIS 731

Introduction
Satellite imagery has the potential to track a number of im-
portant indicators worldwide, such as deforestation, deser-
tification, or crop health; however, with as much data as
satellites are capable of capturing, there exists a challenge
in gathering meaningful insights from such large collec-
tions of data. In particular, algorithms can be trained to an-
alyze and classify satellite imagery, resulting in a trained
model that could be used to detect and track environmental
fluctuations, especially in remote regions of the world that
may be otherwise overlooked. For instance, a trained satel-
lite image classification model could use classification cat-
egories to track a specific region over time, and detect a
change when the category changes.

With this project, my aim is to explore methods of fea-
ture extraction in images, which will be used to train a
classification model. While a convolutional neural network
is well-known to be state-of-the-art in this task, I am
choosing to instead utilize a “classical” machine learning
(ML) algorithm which allows more flexibility in feature
extraction from images. My goal is to first determine an in-
itial baseline— using no feature extraction (only the raw
image pixel data)— by comparing ML classification algo-
rithms, and then select the best-performing algorithms,
based on the evaluation weighted-F1 score, for further ex-
perimentation with different feature extraction methods,
with the end-goal of finding an extraction method that im-
proves the classification weighted-F1 score over the base-
line score.

Related Work

While many of the resources that come from a Google
search of “image classification techniques” yield only in-
formation about image classification with a deep neural
network, I managed to find a great web resource that goes
into detail about methods of feature extraction from imag-
es, specifically for machine learning classification tasks
(Ilango, 2017). This resource details methods of global fea-
ture extraction from images, such as quantifying color, tex-
ture, and shape. Another resource that I found provides in-
formation on modification of the pixel values as a method
of extracting features (Singh, 2019). And another source

(Brownlee, 2019) provides extensive information on fea-
ture selection techniques (such as reducing the number of
features to only those that are statistically significant for
prediction).

Data Set
The dataset for this project is a set of pre-tagged training
and testing satellite images (specifically, images covering
California) from Kaggle (Crawford, 2017). It contains
400,000 28x28 pixel 4-band (red, green, blue, and near-
infrared) training images and labels, and 100,000 testing
images and labels, and is roughly 7 GB in size. The data
labels categorize the images as either “barren land”,
“trees”, “grassland”, or a fourth “other” category for imag-
es that don’t fit the first three. Conveniently, the image
testing and training sets are already encoded into ‘.csv’
files. In X_train and X_test, each line is a list containing
the pixel-by-pixel color value of each image, with each
pixel represented by the 0 to 255 color value in red, green,
blue, and near-infrared respectively. In y_train and y_test,
the labels supplied with the dataset are one-hot-encoded
and take the format of [1,0,0,0] for the “barren land” label,
[0,1,0,0] for the “trees” label, [0,0,1,0] for the “grassland”
label, and [0,0,0,1] for the “other” label. The dataset is not-
ed on Kaggle to have been hand-labeled by using a “label-
ing tool developed as part of this study.” Initially, the im-
ages were sourced from tiles that were approximately
6,000 pixels wide by 7,000 pixels high, which were manu-
ally labeled. Next, the labeled images were split into 28x28
pixel samples by using “non-overlapping sliding window
blocks.” Unfortunately, more details about the initial label-
ing process are not available, and I will assume these labels
to be ground truth for analysis.

Methodology
Platform
I’m using PySpark exclusively to load the data, pre-process
the data, train a classifier model, and evaluate the model. I
selected Google Colab to develop this project with, be-
cause it is cloud-based and can be easily switched from a
free instance to a hosted instance from Google Cloud,
when more dedicated computing resources are needed. Af-

ter considerable frustration and struggling with a free in-
stance of Google Colab to load and pre-process the full
500,000 image and label dataset, I decided to utilize a
hosted VM (with v16 CPU and 64 GB memory) from
Google Cloud. In addition, I did some limited testing with
an Amazon Web Services EMR notebook, hosted on a
small 3-VM cluster, with the data loaded from an AWS S3
bucket. And while the AWS EMR cluster performed better
than a single-VM notebook, the cost was considerably
higher and therefore I chose to forego using it for the im-
plementation of this project. When utilizing a single-
machine for running PySpark with this dataset, it’s im-
portant that the machine has plenty of memory (because
some files are multiple GB in size and PySpark RDD oper-
ations will create new RDDs in memory). Further, it’s nec-
essary to initialize PySpark with a configuration that takes
advantage of all available memory and processing capaci-
ty. Accordingly, prior to initializing a SparkContext, I used
the SparkConf class to set custom configuration parame-
ters.

Data Preprocessing
To initially read the data, I utilized the PySpark sqlCon-
text.read.csv() function to import each .csv file (X_train,
Y_train, X_test, and Y_test) as a dataframe. For ease of da-
ta manipulation, I decided to use the MLlib RDD-based
functions. A RDD (Resilient Distributed Dataset) in
PySpark is a collection of immutable data that can be oper-
ated on in parallel and lacks a schema, which is what
makes it different from a dataframe (DataBricks). And be-
cause the majority of operations for this project will be on-
ly on a single column data where there is no need for a
schema, it makes sense to utilize RDDs. Once each of the
data files has been converted into an RDD, no further pre-
processing is necessary before transforming labels and ex-
tracting features from the data.

For this project, I utilized a number of functions for the
data transformation operations. One main function (da-
ta_preprocess_main()) serves as the first step of initializing
each of four RDDs, and another function (da-
ta_rdd_process()) serves to execute mapping operations to
RDDs. And further functions are defined for specific RDD
mapping operations for which detail follows.

The labels supplied with the dataset are one-hot-
encoded, but the MLlib RDD-based algorithms require
training data to be formatted as a LabeledPoint, which fur-
ther requires the labels to be formatted as a number
(Apache). Therefore, the labels (Y_train and Y_test) need
to be converted by mapping each RDD to a function (con-
vert_label()) that will return the label converted to a nu-
merical data type (I used a float but an integer would likely
work as well).

For testing different feature extraction methods, the orig-
inal rows in each of X_train and X_test need to be mapped
over with functions that will return each row transformed.
In this project, I implemented two functions that accom-

plish this task in different ways: pixels_transform(), which
modifies the image data by utilizing NumPy arrays, and
cv2_transforms(), which transforms the original image data
with functions from OpenCV.

For transformations with NumPy arrays, there are 3
methods of feature extraction that I evaluated. For all
methods, the image data was first converted from a row of
3,136 integers into a 28x28x4 array. The first transfor-
mation (flatten_pixels) gets the mean value for each pixel
(ignoring the 4th value that represents the near-infrared
spectrum value). The second transformation (infra_only)
gets and returns only the near-infrared value for each pixel.
And the third transformation gets the pixel mean, and ap-
pends the near-infrared value to it. Each of these transfor-
mations, with the resulting number of features for each im-
age is shown below in Figure 1.

For transformations with OpenCV, there are 6 methods
of feature extraction that I evaluated. For all of these trans-
formations, the image data was first converted into a
28x28x3 array (ignoring the near-infrared values for each
pixel), and then converted to grayscale. The first transfor-
mation (edges_only) utilizes the cv2.Sobel edge detection
algorithm to find edges in the image, which are then flat-
tened into a single list and returned. The Sobel algorithm
detects edges by finding where there are sudden changes in
pixel intensity, using a 3x1 kernel (Mallick). The second
transformation collates the detected edges into the original
list. Since the location of the edges are important, I made
the assumption that collation would return better results
than simply appending the list of edges onto the end of the
original list. The third transformation (hu_moments) utiliz-
es the cv2.HuMoments to return a list of 7 numbers meant

Figure 1: Feature extraction parameters with de-
scription of the transformation effect and resulting
number of features per image

to characterize the shape of objects in an image (Hu, 1962).
The fourth transformation (hu_moments_plus_pixels), re-
turns the HuMoments appended to the end of the original
image data. The fifth transformation (histo-
gram_greyscale), returns the greyscale image converted in-
to a histogram (separated into 256 bins, to represent each
greyscale color value). And the sixth transformation (his-
togram_greyscale_plus_pixels) returns the greyscale histo-
gram appended to the end of the original image data list.
All of these transformations are shown with the corre-
sponding number of features in Figure 1.

After transformations have been completed on both
X_train and Y_train, both of the resulting RDDs need to be
joined, which I discovered can potentially be tricky with
PySpark. Because the original data files do not contain an
index, both RDDs need to be mapped over to add one.
PySpark contains a useful function for this purpose called
zipWithIndex(), which will add an index to the end of each
RDD row (though I question why it works that way, be-
cause, for a join to work properly, I had to map each RDD
again, to re-order each row with the index first and data
item second). Another issue that I had with joins in
PySpark was that the resulting RDDs from a join will not
be ordered. Though fortunately this issue with joins had no
effect on model training or evaluation results, and is easily
solved by using the PySpark sortBy() function immediately
following a join. Following joining X_train and Y_train in-
to a single RDD, the resulting RDD needed to be converted
into a list of LabeledPoints that consist of a numerical label
and data formatted as the MLlib RDD-based Vectors class.

For the final evaluation step, I attempted to further refine
the best-performing method of feature extraction with two
feature selection methods. First, the ChiSqSelector from
MLlib was used to test whether the features could be fur-
ther refined by selecting the top number of features. The
ChiSqSelector uses a chi-squared test to determine which
features to keep, according to a specified limit in the top
number of features. Second, the MLlib Normalizer was
used to test whether normalizing the features improved the
evaluation score.

Evaluation

To simplify evaluation of algorithms and feature selec-
tion methods, I implemented a function for model evalua-
tion that takes the testing and training RDDs as inputs and
outputs the evaluation metrics. Doing this allowed me iter-
atively evaluate the models without considerable difficulty.

Following selection of the best feature extraction meth-
od, along with the corresponding classification algorithm
and feature selection method, I conducted a 10-fold cross-
validation evaluation of the resulting model to verify re-
sults. For each fold of testing, I used a union to combine
X_train and X_test together into a single RDD, then did
the same with Y_train and Y_test. Next, I joined both of
the combined RDDs into a single RDD, consisting of all
500,000 images and labels. To accomplish 10-fold cross-

validation testing, I used the rdd.randomSplit() function to
split the RDD into sets consisting of 80% training, and
20% testing. In addition, I passed a seed value to the ran-
domSplit() function to ensure that each fold would be split
uniquely. So, by iterating through a range of 10 unique in-
tegers, the data was split uniquely for each evaluation fold.
Each fold of the model was then evaluated using the evalu-
ation function to get the weighted-F1 score. To statistically
confirm whether the null hypothesis (baseline model)
could be rejected, both the baseline model and improved
model were trained and evaluated with identical data for 10
folds. Each model was pre-processed, then each split using
the same seed before being evaluated. And with each fold
of evaluation results for each model being from the exact
same set of training and testing data, I was able to compute
a paired t-test statistic and p-value from the weighted-F1
scores, using the ttest_rel() function from SciPy.

Visualization
Following cross-validation of the best model, I created an
output file to use for visualizations of the resulting classifi-
cations. This was done so that I could load the file at a later
date without needing to process the data again. With the
output file, I utilized matplotlib to generate a subplot figure
displaying the images, along with predicted and actual la-
bels, and alongside a graph plot of the features extracted
from the image.

Models
For initial selection of classification algorithms, I evaluated
six classification algorithms from the Spark MLlib library
using the unmodified image data. The algorithms evaluated
were Random Forest, Decision Tree, Logistic Regression,
Naïve Bayes, Gradient Boosted Trees, and Support Vector
Machine. For each evaluation, the model was trained on
the full training set of 400,000 images and labels, then
evaluated with the MLlib MulticlassClassificationEvalua-
tor with the full testing set of 100,000 images and labels.
The results are displayed in Figure 2, which is sorted de-
scending by weighted-F1 score (which is established as the
evaluation metric under “Evaluation Metrics” below).

Looking at the table, it is clear that the top 3 (Random
Forest, Decision Tree, and Logistic Regression) performed
fairly well at classification using the unmodified image da-
ta. And since the Random Forest model performed the
best, with a weighted-F1 score of 0.81, it will be the base-

Figure 2: Classifier algorithm evaluation results, with un-
modified image data

line to compare with results of different feature extraction
methods.
 For testing several different feature extraction methods,
I’m utilizing Random Forest, Decision Tree, and Logistic
Regression algorithms. Rather than evaluating with just
one algorithm, this makes it more likely that the ideal
model is found, as different types of features extracted
from the images may drastically alter how an algorithm
performs. And while Logistic Regression took substantial-
ly longer than the other two classification algorithms in the
initial evaluation, I am including it with the assumption
that the total time is negligible, because excessive pro-
cessing time would be avoided if this model were deployed
to an actual Spark cluster that could be scaled out with ad-
ditional “workers” as-needed.

Evaluation of Feature Extraction Methods
Baseline
As already established with the initial testing of MLlib
RDD-based algorithms, the baseline for this project is an
evaluation weighted-F1 score of 0.81, which was set by the
Random Forest classifier model using the unmodified im-
age data. As such, the null-hypothesis is that no feature-
extraction methods will improve the weighted-F1 score,
and the alternative-hypothesis is whether each method
(evaluated with each of Random Forest, Decision Tree, and
Logistic Regression classification algorithms) returns a
weighted-F1 score greater than 0.81. And further, if any
methods return a higher weighted-F1 score, I will verify
that the null-hypothesis can be rejected by computing a
paired t-test statistic from 10-fold cross-validation results
between the baseline and improved model.

Evaluation Metrics
To evaluate classification models, accuracy, which is the
ratio of correct predictions to total predictions, seems like
the ideal metric to use as a comparison. However, because
this is a multiclass classification problem, and there is no
guarantee that the model will have an equal number of
training samples from each classification category (mean-
ing that the model may have some classification bias), it’s
better to utilize weighted precision and recall metrics. Pre-
cision is the ratio of true positives to total positives, while
recall is the ratio of true positives to the sum of true posi-
tives and false negatives (Google). And since I want a
model that maximizes both precision and recall for each
category, I chose to use the weighted-F1 score, which is
the harmonic mean of precision and recall, to rank models.
The weighted-F1 score will be calculated with the MLlib
MulticlassClassificationEvaluator.

Results
For each feature extraction method, the training image data
was transformed using that method, then trained with Ran-
dom Forest, Decision Tree, and Logistic Regression algo-
rithms. Each resulting model was then evaluated with the
testing image data (which was also accordingly trans-
formed). The results are shown in Figure 3, sorted in de-
scending order by weighted-F1 Score.

Based on the evaluation results, the “histo-
gram_greyscale” method of feature extraction, with the
Logistic Regression algorithm, was the best performer,
with a weighted-F1 score of 0.92. An interesting observa-
tion from these results is that, while this feature extraction
method significantly improved results with the Logistic
Regression algorithm, the other algorithms tested with this
method fared only slightly better or worse than the original
evaluations with unmodified image data. With the best fea-
ture extraction method identified (of the limited number
tested), I attempted to further improve the set of features
by utilizing feature selection methods available in MLlib.
A table of results detailing the feature selection methods,
and new evaluation scores, is shown in Figure 4.

Figure 3: Evaluation results of feature extraction methods
with Random Forest, Decision Tree, and Logistic Regression
classification algorithms.

Based on comparing between the tables in Figure 4 and
Figure 3, normalizing the features did improve the preci-
sion and accuracy scores for the best model by 0.01, but
did not significantly boost the weighted-F1 score. Howev-
er, this is still an improvement, and did not add significant
computation time. On the other hand, the chi-square selec-
tion method caused evaluation results to worsen.

After determining the best-performing model to be with
“histogram_greyscale” feature extraction, with normalized
features, and with the Logistic Regression algorithm, I
computed 10-fold cross-validation results for both the
baseline and improved model, then used those results to
compute a paired t-test statistic and p-value. The mean re-
sult from cross-validation slightly improved the original
baseline weighted-F1 score (from 0.81 to 0.82), and evalu-
ation score of the improved best-model decreased slightly,
and achieved a mean weighted-F1 score from cross-
validation of 0.92. Using cross-validation testing results,
the t-test statistic between the baseline and improved mod-
el was calculated with a statistic of -236.343 and p-value of
2.21E-18. Since the p-value is less than 0.05, I conclude
with 95% confidence that there is a statistically significant
improvement versus the baseline model.

Conclusion

Of the feature extraction methods tested, the method of
generating a greyscale histogram from the image, along
with utilizing the Logistic Regression algorithm and nor-
malizing the features, returned the best results, improving
the baseline weighted-F1 score from 0.81 to 0.93. A visual-
ization, displaying a manually-selected sample of images,
with a correctly and incorrectly predicted image for each
class, is shown in Figure 5. This visualization also displays
the greyscale histogram that was extracted from each im-
age.

Future Work
Unfortunately, time-restrictions limited the number of po-
tential feature extraction methods that I was able to imple-
ment and evaluate. While the 0.93 weighted-F1 score that
the best model achieved was an improvement in the base-
line, I believe that there is still room for improvement be-
yond that result. Due to the success of using greyscale his-
togram features in improving image classification accura-
cy, I believe that there is potential for further tests with al-

ternate methods of generating histograms from images,
such as using the full RGB or near-infrared pixel values in-
stead; or alternatively, concatenating the histogram with
other global image extraction features, such as Hu Mo-
ments. In addition, limiting my evaluation to the MLlib
RDD-based algorithms did omit some algorithm options
that are included only with the MLlib dataframe-based li-
brary, such as a Multilayer Perceptron Classifier, a One-
Vs-Rest classifier, and a Factorization Machines classifier.
I believe that there would be benefit from further testing to
determine how those algorithms perform.
 An important consideration is whether the models de-
veloped for this project would actually perform well with
unlabeled satellite imagery to accomplish monitoring tasks
similar to those described in the introduction. Unfortunate-
ly, any real-world benefit of the model would be limited,
due to there being far more than 4 basic-categories that sat-
ellite imagery could fall under. Therefore, there would be
benefit for future work to add many more classification
categories, such as “mountainous”, “water”, or “clouds” (to
identify regions where clouds had obscured the image, and
should therefore have new imagery sourced) for examples.

References
Apache. Apache Spark Documentation. MLlib: RDD-based
API Guide. https://spark.apache.org/docs/latest/mllib-
guide.html.

Figure 4: Evaluation results of ‘histogram_greyscale’ fea-
ture extraction method and Logistic Regression algorithm,
with additional feature selection methods, sorted descending
by weighted-F1 Score

Figure 5: A sample of images corresponding to each clas-
sification category (one correct and incorrect classifica-
tion for each), as well as the extracted greyscale histogram

Brownlee, Jason. 2019. How to Choose a Feature Selection
Method For Machine Learning. Machine Learning Mastery.
November 27, 2019.
https://machinelearningmastery.com/feature-selection-with-
real-and-categorical-data/.

Crawford, Chris. 2017. DeepSat (SAT-4) Airborne Dataset.
Kaggle. 2017. https://www.kaggle.com/crawford/deepsat-sat4.

DataBricks. DataBricks.com. Resilient Distributed Dataset.
https://databricks.com/glossary/what-is-rdd.

Google. Machine Learning Crash Course. Google.
https://developers.google.com/machine-learning/crash-
course/classification/precision-and-recall.

Hu, Ming-Kuei. 1962. Visual pattern recognition by moment
invariants. 1962, Vol. vol. 8, no. 2, pp. 179-187.

Ilango, Gogul. 2017. Image Classification using Python and
Scikit-learn. 2017. https://gogul.dev/software/image-
classification-python.

Mallick, Satya. LearnOpenCV. Edge Detection Using
OpenCV. https://learnopencv.com/edge-detection-using-
opencv/.

Singh, Aishwarya. 2019. 3 Beginner-Friendly Techniques to
Extract Features from Image Data using Python. Analytics
Vidhya. August 29, 2019.
https://www.analyticsvidhya.com/blog/2019/08/3-techniques-
extract-features-from-image-data-machine-learning-python/.

