
Reinforcement Learning
Training a Deep RL Model to Play Mario Bros

Zack Strathe 
CIS 730



Introduction

• With reinforcement learning (RL), models can be trained to learn tasks 

using only a reward function 

• Such as real-world examples of 

• self-driving cars learning to drive safer

• software-agents learning to maximize efficiency of an electrical grid

• To explore RL, I implemented a simplified example to train a game-playing 

agent to play the NES game Mario Bros

• Goal: to complete the first level

2



Gameplay Information

• Killing enemies is a two-step process

• Hit from below to stun enemies, then run into them to finish

• Timed delay before they return to normal state (~9 seconds)

• Increases difficulty of RL model to find successful state-action pairs

• Reward farming is possible

• The game rewards 10 points each time an enemy is stunned by hitting it from below

• 10 points rewarded each time means model may become “stuck” repeating this behavior

3



Methodology

• Platform for Model

• Open AI Gym Retro 

• Python library that provides a simple interface for building reinforcement learning models 

with retro games 

• Utilizes mappings of game variables in memory to utilize for a reward function

• Mario Bros already integrated, with a reward function based on the game score

• Cloud Computing

• Due to processing requirements of RL, I found it necessary to utilize cloud computing

• Google Cloud (with a GPU for faster training)

4



Reinforcement Learning Model

• Proximal Policy Optimization

• Model-free reinforcement learning algorithm developed by OpenAI

• A policy gradient method, uses a clipping factor to ensure that policy does not 
change too much with each update

• Ideal for ease of implementation and tuning of parameters

• Utilizing the ‘PPO2’ algorithm from OpenAI’s Baselines module and a 
Convolutional Neural Network (CNN) 

• With a CNN, this is a Deep RL model

5



Experiment Design

• Based on a human player, if model achieves a score of 2,430 points during 
training, should be able to complete first level

• Models that reached this score were saved and recorded to verify whether 
the goal was met

Source: video of human player
6

https://www.youtube.com/watch?v=WFptXdODy7k


Model improvement methods (1/4)
• Modifying the reward function

• Base on number of enemies remaining instead of default (game score)

• Modified data.json and scenario.json files within Gym subdirectory for game 

7



Results: modifying the reward function

• Plot of mean reward from model trained to 5 million steps shows that new reward function is 
ineffective 

• Likely fails because rewards are too sparse:
• Does not allow the model to generalize state and action pairs, since most actions are accompanied by 

zero change to reward
8



Model improvement methods (2/4)
• Modifying the Observation Space 

• Test cropping out unnecessary parts of the screen image
• Eliminate “noise” such as the score display

• Test changing default sampling method from 84x84 pixel 
grayscale images to RGB (colored) images
• Also test doubling observation size to 168x168 pixels

9



Results: modifying the observation space 
(cropping)

• While the first model trained looked very promising, further tests using the same 
parameters did not improve performance significantly

• However, there does appear to be benefit so further models incorporate cropping

10



Results: modifying the observation space 
(RGB images & upscaled)

• There does not appear to be any tangible benefit from utilizing RBG 
images, or with rescaling, compared to default (84x84 greyscale)

• While not logged, training time was significantly slower as well
11



Model improvement methods (3/4)
• Modifying the Action Space 

• Specify valid buttons / actions rather than the default
• Left, Right, A (jump)

• Method utilized by top teams in OpenAI Retro Contest to play Sonic the Hedgehog

12



Results: modifying the action space

• Similar to cropping the observation space, while the first model trained looked 
very promising, another test using the same parameters did not significantly 
improve performance 

• But training performance appears to improve slightly, so further models utilize 
modified actions 13



Model improvement methods (4/4)

• Hyperparameter Tuning
• Test algorithm hyperparameters to improve model training performance

• Based hyperparameters on Team Dhajarama (winning team in OpenAI Retro Contest)

Source: Team Dhajarama Github Repo 14

https://github.com/eyounx/RetroCodes/blob/master/A3gent/main_ppo.py


Results: hyperparameter tuning

• V3 version of hyperparameters appears to more-consistently generate 
a model that begins to converge on a successful policy of state-action 
pairs by 5 million steps

15



Conclusion

• None of the models that initially 
achieved the baseline score were 
actually able to complete the first 
level

• However, two of the models (A & C) 
had training continued to 20 million 
steps
• video playback confirmed that they 

could complete the level

16



Future Work

• Due to stochasticity observed with training models using the OpenAI 
Baselines library:
• Evaluate alternative implementations of the PPO algorithm

• Potentially implement behavior cloning / imitation learning
• Pre-learn complex sequences, such as the two-step process of killing enemies 

in Mario Bros

17



Video of trained models

18


