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Reinforcement Learning

~ Training a Deep RL Model to Play Mario Bros
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Introduction

e With reinforcement learning (RL), models can be trained to learn tasks
using only a reward function
e Such as real-world examples of
 self-driving cars learning to drive safer
* software-agents learning to maximize efficiency of an electrical grid
* To explore RL, | implemented a simplified example to train a game-playing
agent to play the NES game Mario Bros

e Goal: to complete the first level



Gameplay Information

 Killing enemies is a two-step process

* Hit from below to stun enemies, then run into them to finish
* Timed delay before they return to normal state (~9 seconds)

* Increases difficulty of RL model to find successful state-action pairs

* Reward farming is possible

 The game rewards 10 points each time an enemy is stunned by hitting it from below

* 10 points rewarded each time means model may become “stuck” repeating this behavior



Methodology

e Platform for Model
* Open Al Gym Retro

* Python library that provides a simple interface for building reinforcement learning models

with retro games
* Utilizes mappings of game variables in memory to utilize for a reward function

* Mario Bros already integrated, with a reward function based on the game score

* Cloud Computing

* Due to processing requirements of RL, | found it necessary to utilize cloud computing

* Google Cloud (with a GPU for faster training)



Reinforcement Learning Model

* Proximal Policy Optimization

Model-free reinforcement learning algorithm developed by OpenAl

A policy gradient method, uses a clipping factor to ensure that policy does not
change too much with each update

Ideal for ease of implementation and tuning of parameters

Utilizing the ‘PPO2’ algorithm from OpenAl’s Baselines module and a
Convolutional Neural Network (CNN)

e With a CNN, this is a Deep RL model



Experiment Design

* Based on a human player, if model achieves a score of 2,430 points during
training, should be able to complete first level

* Models that reached this score were saved and recorded to verify whether
the goal was met


https://www.youtube.com/watch?v=WFptXdODy7k

Model improvement methods (1/4)

* Modifying the reward function

e Base on number of enemies remaining instead of default (game score)
* Modified data.json and scenario.json files within Gym subdirectory for game

data.json X

1

"info": {
"level™: {

"address": 65,

rltypelr - oM™

"lives": {

"address": T2,

rltypelr FEL TR A

"score™: {

"address™: 148,

"type": ">d4"

"enemies": {

"address": €8,

rltypelr - oM™

Default Modified
scenario.json X scenario2json X
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Results: modifying the reward function

Training Result of Modified Reward Function
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* Plot of mean reward from model trained to 5 million steps shows that new reward function is
ineffective
* Likely fails because rewards are too sparse:

* Does not allow the model to generalize state and action pairs, since most actions are accompanied by
zero change to reward



Model improvement methods (2/4)

* Modifying the Observation Space

 Test cropping out unnecessary parts of the screen image

* Eliminate “noise” such as the score display
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* Test changing default sampling method from 84x84 pixel

grayscale images to RGB (colored) images
Also test doubling observation size to 168x168 pixels



Results: modifying the observation space
(cropping)

Training Results with Cropping the Observation Space

* While the first model trained looked very promising, further tests using the same
parameters did not improve performance significantly

* However, there does appear to be benefit so further models incorporate cropping
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Results: modifying the observation space
(RGB images & upscaled)
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* There does not appear to be any tangible benefit from utilizing RBG
images, or with rescaling, compared to default (84x84 greyscale)

* While not logged, training time was significantly slower as well
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Model improvement methods (3/4)

* Modifying the Action Space

 Specify valid buttons / actions rather than the default
» Left, Right, A (jump)
 Method utilized by top teams in OpenAl Retro Contest to play Sonic the Hedgehog

class MarioDiscretizer (Discretizer) :
def init (self, env):
super(). init (env=env, combos=]
["LEFT'], #0 left
['"RIGHT'], #1 right
['2'] #2 jump

1)

def wrap_deepmind_retra{env, scale=False, frame stack=4):

Configure environment for retro games, using config similar to DeepMind-style Atari in wrap deepmind

env = MaricDiscretizer (env)
env = WarpFrame (env)
env = ClipRewardEnv(env)
if frame stack > 1:
env = FrameStack(env, frame stack)
if scale:
env = ScaledFlcatFrame (env)

return env
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Results: modifying the action space

Training Results with an Updated Discrete Action Space
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* Similar to cropping the observation space, while the first model trained looked

very promising, another test using the same parameters did not significantly
improve performance

* But training performance appears to improve slightly, so further models utilize
modified actions
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Model improvement methods (4/4)

* Hyperparameter Tuning

e Test algorithm hyperparameters to improve model training performance
* Based hyperparameters on Team Dhajarama (winning team in OpenAl Retro Contest)

Team Dhajarama PPO Hyperparameters V1
Baselines PPO2 Default (bolded if dlfferent from default)

_—

noptepochs

noptepochs
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—“
_“
_
total_timesteps total_timesteps
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https://github.com/eyounx/RetroCodes/blob/master/A3gent/main_ppo.py

Results: hyperparameter tuning

Training Results with Hyperparameter Tuning
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* V3 version of hyperparameters appears to more-consistently generate
a model that begins to converge on a successful policy of state-action

pairs by 5 million steps 1



Conclusion

Able to
complete
level 1

Able to

complete
level 1

Results of viewine model video plavback

Cropped model

Updated Discrete| Model using V3

Action Space

Hyperparameters

* None of the models that initially
achieved the baseline score were
actually able to complete the first
level

 However, two of the models (A & C)
had training continued to 20 million
steps

 video playback confirmed that they
could complete the level
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Future Work

* Due to stochasticity observed with training models using the OpenAl
Baselines library:

* Evaluate alternative implementations of the PPO algorithm

* Potentially implement behavior cloning / imitation learning

* Pre-learn complex sequences, such as the two-step process of killing enemies
in Mario Bros
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Video of trained models
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