

Introduction

- With reinforcement learning (RL), models can be trained to learn tasks using only a reward function
 - Such as real-world examples of
 - self-driving cars learning to drive safer
 - software-agents learning to maximize efficiency of an electrical grid
- To explore RL, I implemented a simplified example to train a game-playing agent to play the NES game Mario Bros
 - Goal: to complete the first level

Gameplay Information

- Killing enemies is a two-step process
 - Hit from below to stun enemies, then run into them to finish
 - Timed delay before they return to normal state (~9 seconds)
 - Increases difficulty of RL model to find successful state-action pairs
- Reward farming is possible
 - The game rewards 10 points each time an enemy is stunned by hitting it from below
 - 10 points rewarded each time means model may become "stuck" repeating this behavior

Methodology

- Platform for Model
 - Open Al Gym Retro
 - Python library that provides a simple interface for building reinforcement learning models with retro games
 - Utilizes mappings of game variables in memory to utilize for a reward function
 - Mario Bros already integrated, with a reward function based on the game score
- Cloud Computing
 - Due to processing requirements of RL, I found it necessary to utilize cloud computing
 - Google Cloud (with a GPU for faster training)

Reinforcement Learning Model

- Proximal Policy Optimization
 - Model-free reinforcement learning algorithm developed by OpenAI
 - A policy gradient method, uses a clipping factor to ensure that policy does not change too much with each update
 - Ideal for ease of implementation and tuning of parameters
 - Utilizing the 'PPO2' algorithm from OpenAI's Baselines module and a Convolutional Neural Network (CNN)
 - With a CNN, this is a Deep RL model

Experiment Design

- Based on a human player, if model achieves a score of 2,430 points during training, should be able to complete first level
- Models that reached this score were saved and recorded to verify whether the goal was met

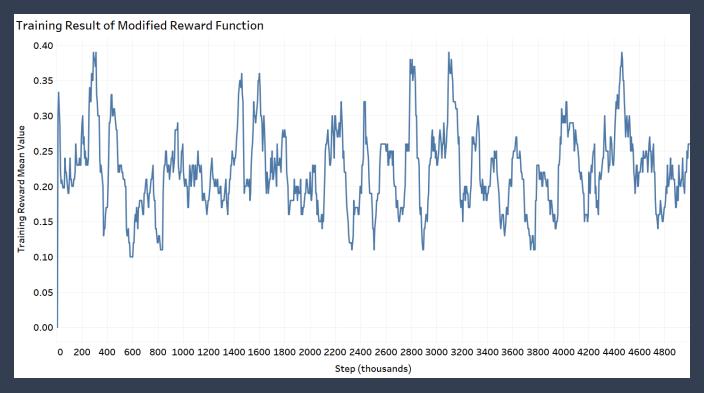
Model improvement methods (1/4)

- Modifying the reward function
 - Base on number of enemies remaining instead of default (game score)
 - Modified data.json and scenario.json files within Gym subdirectory for game

```
data.json X
    "info":
       "level": {
         "address": 65,
         "type": "|d1"
       "lives": {
        "address": 72,
         "type": "|u1"
10
       "score": {
        "address": 148,
         "type": ">d4"
14
       "enemies": {
         "address": 68,
         "type": "|d1"
```

```
Modified
        Default
scenario.ison X
                                 scenario2.json X
   "crop": [
                                    "crop": [
                                      0,
                                      25,
                                      184
   "done": {
                                    "done": {
     "variables": {
                                      "variables": {
       "lives": {
                                        "lives": {
         "op": "equal",
                                          "op": "equal",
         "reference": 0
                                          "reference": 0
                              13
                              14
                              15
   "reward": {
                                    "reward":
     "variables": {
                                      "variables": {
       "score": {
                                        "enemies": {
                                          "op": "negative",
                                          "reward": 1
                               22
                               23
```

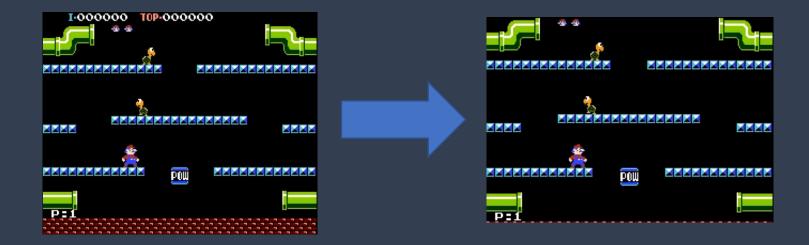
Results: modifying the reward function



- Plot of mean reward from model trained to 5 million steps shows that new reward function is ineffective
- Likely fails because rewards are too sparse:
 - Does not allow the model to generalize state and action pairs, since most actions are accompanied by zero change to reward

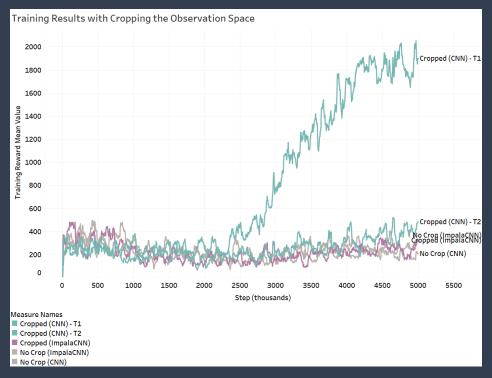
Model improvement methods (2/4)

- Modifying the Observation Space
 - Test cropping out unnecessary parts of the screen image
 - Eliminate "noise" such as the score display



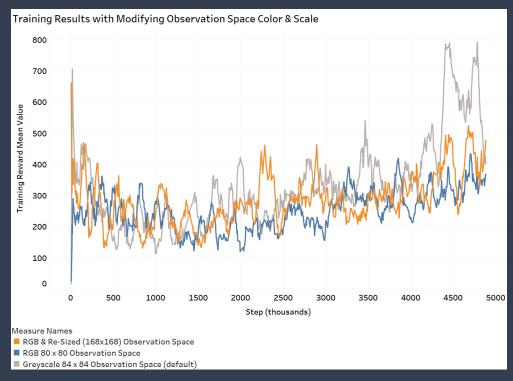
- Test changing default sampling method from 84x84 pixel grayscale images to RGB (colored) images
 - Also test doubling observation size to 168x168 pixels

Results: modifying the observation space (cropping)



- While the first model trained looked very promising, further tests using the same parameters did not improve performance significantly
- However, there does appear to be benefit so further models incorporate cropping

Results: modifying the observation space (RGB images & upscaled)



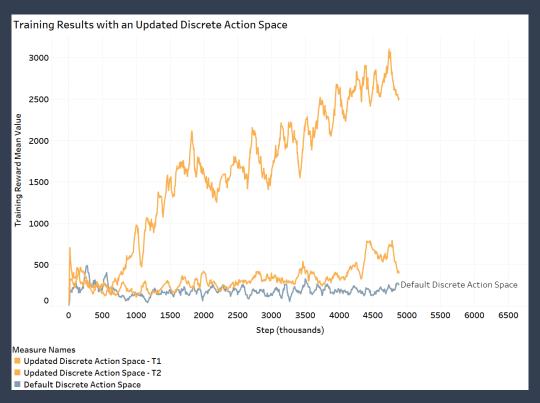
- There does not appear to be any tangible benefit from utilizing RBG images, or with rescaling, compared to default (84x84 greyscale)
- While not logged, training time was significantly slower as well

Model improvement methods (3/4)

- Modifying the Action Space
 - Specify valid buttons / actions rather than the default
 - Left, Right, A (jump)
 - Method utilized by top teams in OpenAl Retro Contest to play Sonic the Hedgehog

```
class MarioDiscretizer(Discretizer):
   def init (self, env):
       super(). init (env=env, combos=[
           ['LEFT'], #0 left
           ['RIGHT'], #1 right
                  #2 jump
           ['A']
def wrap deepmind retro(env, scale=False, frame stack=4):
    Configure environment for retro games, using config similar to DeepMind-style Atari in wrap deepmind
    env = MarioDiscretizer(env)
    env = WarpFrame(env)
    env = ClipRewardEnv(env)
    if frame stack > 1:
       env = FrameStack(env, frame stack)
    if scale:
       env = ScaledFloatFrame(env)
    return env
```

Results: modifying the action space



- Similar to cropping the observation space, while the first model trained looked very promising, another test using the same parameters did not significantly improve performance
- But training performance appears to improve slightly, so further models utilize modified actions

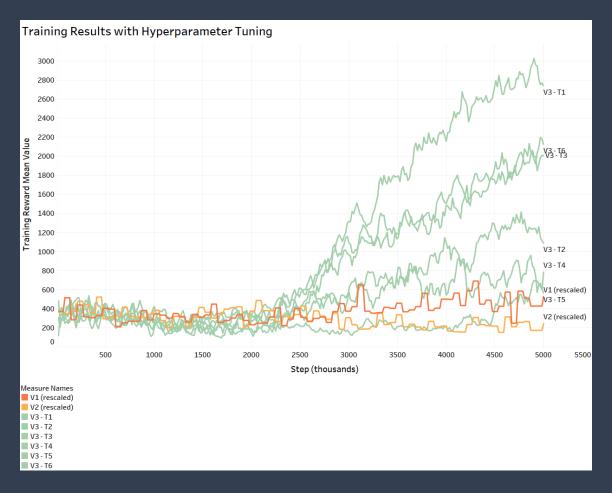
Model improvement methods (4/4)

- Hyperparameter Tuning
 - Test algorithm hyperparameters to improve model training performance
 - Based hyperparameters on Team Dhajarama (winning team in OpenAl Retro Contest)

		Team Dhajarama PPO Hyperparameters	
	Baselines PPO2 Default	(bolded if different from default)	
policy	n/a	CnnPolicy	
nsteps	2048	8192	
nminibatches	4	8	
lam	0.95	0.95	
gamma	0.99	0.99	
noptepochs	4	4	
ent_coef	0	0.001	
lr	3.00E-04	2.00E-05	
cliprange	0.2	0.2	
total_timesteps	n/a	1.00E+10	

	V1	V2	V3
policy	CnnPolicy	CnnPolicy	CnnPolicy
nsteps	8192	8192	2048
nminibatches	8	8	8
lam	0.95	0.95	0.95
gamma	0.99	0.99	0.99
noptepochs	4	4	4
ent_coef	0.001	0.001	0.001
lr	2.00E-05	3.00E-04	3.00E-04
cliprange	0.2	0.2	0.2
total_timesteps	5.00E+06	5.00E+06	5.00E+06

Results: hyperparameter tuning



 V3 version of hyperparameters appears to more-consistently generate a model that begins to converge on a successful policy of state-action pairs by 5 million steps

Conclusion

	Results of viewing model video playback					
	Cropped model (A)	Updated Discrete Action Space (B)	Model using V3 Hyperparameters (C)			
Training Steps	5 million	5 million	5 million			
Mean training score	1,901	2,508	2,742			
Able to complete level 1	No	No	No			

With model training continued to 20 million steps:					
Mean					
training	6,705	n/a (didn't test)	6,471		
score					
Able to					
complete	Yes	n/a (didn't test)	Yes		
level 1					

 None of the models that initially achieved the baseline score were actually able to complete the first level

- However, two of the models (A & C) had training continued to 20 million steps
 - video playback confirmed that they could complete the level

Future Work

- Due to stochasticity observed with training models using the OpenAI Baselines library:
 - Evaluate alternative implementations of the PPO algorithm
- Potentially implement behavior cloning / imitation learning
 - Pre-learn complex sequences, such as the two-step process of killing enemies in Mario Bros

Video of trained models

