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Introduction 
In the field of reinforcement learning (RL), models can be 
trained that are capable of learning to complete tasks with 
only a reward function to guide positive behavior. In real-
world applications, there seem to be countless use cases 
where reinforcement learning could be used to automate 
tasks—for example, with self-driving cars that are capable 
of learning to drive more safely, or software-agents at-
tempting to maximize efficiency of an electrical grid. The 
concept of artificial intelligence that can continually learn 
to become better is very promising, but there exist draw-
backs and limitations. And to explore the concept of rein-
forcement-learning, it is helpful to simplify an implementa-
tion with a toy example, such as a game-playing agent. 
Therefore, the focus of this project will be to train a RL 
agent to play a simple retro game from the Nintendo Enter-
tainment System: Mario Bros. 

The overall goal of this project is to utilize a deep-
reinforcement policy to train a game-playing agent to suc-
cessfully play the classic NES game Mario Bros and com-
plete the first level. This game is very simple, with only 
three controls available for the agent (move left, move 
right, jump). The action space in this game is discrete and 
the environment is fully-observable. Further details about 
the game environment are presented in Appendix I. My re-
search objective is to research multiple reinforcement-
learning (RL) algorithms and implement the best candidate 
for training a game-playing agent. After selecting an algo-
rithm to utilize, in order to develop the best possible mod-
el, I will experiment with modifying the reward function, 
modifying the action space, modifying the observation 
space, and modifying algorithm hyperparameters. 
 

Background and Related Work 
The implementation for controlling a reinforcement-
learning agent in Mario Bros already exists as a pre-built 
environment in OpenAI Gym Retro (OpenAI n.d.). A 
YouTube video (World of Longplays 2012) shows game-
play by a human player, from which I will use the score as 
a baseline for how many points the RL agent should score 

to complete the first level. In the video, the player com-
pletes the first level with a score of 2,430 points. There-
fore, if a trained RL agent achieves 2,430 points or greater, 
it will be assumed that it can complete the first level. 

To become more familiar with some basic RL algo-
rithms I researched the documentation from OpenAI Spin-
ningUp (OpenAI n.d.). My findings were that either Prox-
imal Policy Optimization (PPO) or Trust Region Policy 
Automation (TRPO) algorithms would be an ideal choice 
for a game-playing agent, as they are currently leading-
edge when handling discrete action spaces. And further, 
the paper “Proximal Policy Optimization Algorithms” 
(Schulman et. Al. 2017), indicates that both PPO and 
TRPO achieve similar results, but with PPO having a more 
simplified implementation and sampling complexity, so I 
believe that PPO will be the ideal choice for this imple-
mentation of reinforcement learning. In addition, I re-
searched into examples of others’ work that implement 
game-playing agents utilizing OpenAI Gym Retro; a 
webpage (Poliquin 2019) provides some in-depth infor-
mation about doing this. The website’s author linked to a 
number of videos showing the results of game-playing 
agents trained using OpenAI Gym Retro, utilizing the 
PPO2 algorithm from OpenAI Baselines. The website also 
shows how to graph metrics such as the training reward 
score over time. 
    

Methodology 
To train a RL agent to play Mario Bros, I utilized the 
OpenAI Gym Retro library for Python, which contains a 
fairly simple interface for conducting reinforcement-
learning on a supported game environment. Located in the 
‘MarioBros-Nes’ files within Gym Retro directory is a 
‘scenario.json’ file which defines the reward function for 
the game. The ‘scenario’ file defines memory locations of 
variables that are to be tracked and used as an input to the 
reward function. By default, the Mario Bros scenario file 
defines the reward function as only the game score. The 
obvious benefit of this reward function is that it should 
work in most cases, as the goal of most games is generally 



to score more points. However, this reward function does 
have an obvious drawback: it can lead the agent to behav-
ior that may not contribute to the goal. In many games, ac-
tions can reward the player with points, though the action 
may not contribute toward progression in completing the 
game. As noted in gameplay notes in Appendix I, Mario 
Bros especially features gameplay elements that may lead a 
RL agent to engage in repetitive behavior that does not 
contribute to completing the level.  

In addition to utilizing the Open AI Retro library, for 
choosing a state-of-the-art algorithm, I decided to utilize 
the Open AI Baselines library, which supplies of number 
of implementations of leading-edge algorithms. And in 
particular, Baselines contains the PPO algorithm, which 
my research indicates to be a leading algorithm when it 
comes to performance as well as simplified implementa-
tion. And although there exist many alternative libraries 
that also provide PPO algorithms, I determined through in-
formal testing that the Baselines library provided the fast-
est training speed and best results with the “PPO2” algo-
rithm, which uses TensorFlow 1.x for execution. One 
downside to using the Baselines library is that it is not cod-
ed very modular and can be difficult to utilize without us-
ing the command-line interface that is provided with the li-
brary, which makes building a custom model from scratch 
to be a difficult approach. However, I found that utilizing 
the command line interface worked well, and any code cus-
tomizations could be simply done by downloading the li-
brary and modifying those files as-needed.  

For monitoring the training process with real-time 
graphs of the mean reward score, utilized TensorBoard. 
Further, TensorBoard provides a simple method of saving 
training logs as “.csv” files for further analysis or devel-
opment of visualizations. For the development of visualiza-
tions, first made manual modifications to the logs (to re-
scale the number of steps logged, as some algorithm pa-
rameters will provide different intervals for the same total 
number of steps). Then, I imported the logs into Tableau to 
build comparative graphs.  

One very important consideration with training a RL 
agent is the availability of computing resources. Because it 
is commonplace for RL training to take millions of steps, 
training time without sufficient computing resources can 
be a very long process. In my initial testing with a laptop 
(equipped with an AMD Ryzen 5 3500U CPU and no ded-
icated GPU), the training time to reach 1 million steps was 
measured in days. Therefore, it was quickly apparent that I 
needed to utilize cloud computing, and preferably with the 
option of utilizing a GPU since the Baselines “PPO2” algo-
rithm enables GPU calculations for a significant speedup 
(OpenAI 2017). Therefore, I selected to utilize the Google 
Cloud platform, which offers dedicated VM instances of 
Colab notebooks, with the option of adding a dedicated 
GPU. After informal testing, I opted to utilize a VM with 
an 8-core vCPU and a dedicated Nvidia Tesla T4 GPU.  

With this VM, I was able to train a model to 5 million steps 
in approximately 2 hours. 
 

Experiment Design 
To evaluate whether a trained model met the goal of com-
pleting the first level, I used a score benchmark because it 
is easy to extract from the game environment. So, if during 
training a model, the mean training reward score met or 
exceeded the baseline score of 2,430 points, determined 
from a video of a human player (World of Longplays 
2012), the assumption was that the model had met the goal. 
Further, if a model did achieve a training mean reward 
score above 2,430 points, I saved the model and recorded a 
video to verify whether it actually could complete the lev-
el. 
 To attempt to improve upon a model trained with default 
parameters from the Gym Retro and Baselines libraries, I 
attempted improvements in four categories: modifying the 
reward function, modifying the observation space, modify-
ing the action space, and last, modifying the PPO algo-
rithm hyperparameters. Each training run consisted of 
training a model to 5 million timesteps, which based on in-
formal testing, seemed to be an approximate point where 
models will either begin to converge to a successful strate-
gy or not.  
 

Results and Conclusions 
Modifying the Reward Function 
To modify the reward function, I updated the default “sce-
nario.json” file for the Mario Bros game in the Gym files 
to calculate the reward based on killing enemies, providing 
a reward of 1 for each time the number of enemies is re-
duced. To do this, I utilized the OpenAI Gym Integration 
Tool to find the memory location where the variable for the 
number of enemies is stored. With this variable located, I 
updated the “data.json” file to include the new variable, 
and then updated the scenario file to give a reward of 1 

 
              Figure 1: Modified “data.json” file to  
              include the “enemies” variable and memory         
              address 
 



each time the number of enemies variable decreases.  
Screenshots of the modified data and scenario files are 
shown in Figures 1 and 2. 

The PPO model was trained to 5 million steps using the 
modified reward function, and the results are shown in 
Figure 3. By the shape of the graph, it is apparent that the 
agent was unable to learn any beneficial behavior since 
there is no trend shown in the mean reward value increas-
ing over time. This is likely because rewards are too sparse 
with the modified reward function, which does not allow 
the model to generalize state and action pairs, since most 
actions are accompanied with zero change to the reward 
function. Therefore, for subsequent testing of other model 
settings, I reverted to the default reward function (which 
uses the game score only). 

Modifying the Observation Space 
While looking into modifying the reward function, I no-
ticed that Gym Retro allows for cropping of the observa-
tion space with the “scenario.json” file (with cropping 
shown in the screenshots in Figure 2). Because using a 
convolutional neural network (CNN) utilizes images of the 
game environment (IBM 2020), it seems sensible that a 
model would better be able to generalize states and actions 
if useless information/noise is removed from the inputs. 
For example, the score at the top of the screen will update 
throughout the training process and would be sampled by 
the CNN. At best, I believe the model training process may 
be only slightly slowed down by the extra erroneous input 
data; and at worst, the score info could cause the model to 
make incorrect state-action pair associations. Therefore, I 
experimented with training the model and cropping out the 
score info (as well as some unchanging space at the bottom 
of the screen). At this stage I also compared results from 
using the “CnnPolicy” and “ImpalaCnnPolicy” that are 
provided with the Baselines library. The results are shown 
in Figure 4.  

While the first training run with the cropped environ-
ment and CNN policy seemed to be extremely promising 
(shown as “Cropped (CNN) – T1” in Figure 4), the subse-
quent training run (noted as “T2” in Figure 4) using the 
same parameters and seed displayed results much closer to 
the average. While this does show that stochasticity is cer-
tainly a factor in these training experiments (despite using 
an unchanging seed number), the graph does seem to indi-
cate that the cropped observation space generally outper-
forms the uncropped observation space, and similarly, that 
the “CnnPolicy” outperforms the “ImpalaCnnPolicy.” 
While a larger sampling size would significantly help with 

 
Figure 2: Showing the default versus modified scenario 
files, with the modified reward function calculated to 
provide of reward of 1 every time the number of ene-
mies is reduced 
 

 
Figure 3: Training results to 5 million steps with the 
modified reward function  
 

 
 
Figure 4: Training results to 5 million steps, showing 
comparison of cropping the environment, as well as 
comparison between the CNN and  
ImpalaCNN networks provided with the OpenAI Base-
lines library 
 



making these determinations, the significant computing 
cost and time of each training run severely limits feasibility 
of additional sampling. Accordingly, for the following 
model-training experiments, each will utilize the cropped 
observation space and “CnnPolicy.” 
 In modifying the observation space, I also looked at re-
sults from OpenAI’s Retro Contest (OpenAI 2018), where 
teams competed to train agents to play the game Sonic the 
Hedgehog. Specifically, I looked to what the winning 
team—Team Dharmaraja—did (Yang 2018). The default 
Baselines PPO2 algorithm samples the environment as an 
84x84 pixel greyscale image, however Team Dharmaraja 
modified that to utilize an RGB image. Therefore, I also at-
tempted to train my model with an RGB image input, 
which I accomplished by modifying one of the default 
“wrappers” in the Baselines library—specifically the 
“WarpFrame” wrapper which changes how the environ-
ment image is sampled. In addition, I also tested modifying 
parameters of the WarpFrame wrapper to double the size 
of images, using 168x168 pixel images rather than the de-
fault of 84x84 pixels. To implement these modifications 
with the Baselines library, I modified some of the Base-
lines library files. When using a Gym Retro environment, 
the Gym environment is built from the Base-
lines/common/retro_wrappers.py file. Within this file, I 
modified the call within the “wrap_deepmind_retro” func-
tion to build the environment using the WarpFrame wrap-
per, specifying optional parameter values for “width”, 
“height”, and “greyscale.” The results of training the mod-
els with these settings to 5 million timesteps are shown in 
Figure 5. 
 

 From observing the graph in Figure 5, it’s easy to de-
termine that there seems to be no benefit from both using a 

RGB-colored observation space and re-sizing the observa-
tion space. And though I don’t have metrics for it, the 
training speed with both of these modifications were sig-
nificantly slower than using the default greyscale 84x84 
image of the game environment. Therefore, no further tests 
will utilize these settings, and the only observation space 
modification for subsequent tests will be a cropped game 
image. 
 
Modifying the Action Space 
To modify the action space, I again looked at what suc-
cessful teams did in the OpenAI Retro Contest. I observed 
in the Baselines code library that, while the default Retro 
Gym environment is built defining the action space using a 
“retro.actions.Discrete” class, the successful teams utilized 
a Gym wrapper class called “SonicDiscretizer” which spe-
cifically defined the buttons for the game that could be uti-
lized by the model. Therefore, for this project, I copied that 
class and called it “MarioDiscretizer,” and provided a 
mapping of the three possible actions in the game (“Left”, 
“Right”, and “Jump”). The training results from utilizing 
the modified action space are displayed in Figure 6. 

While the sample size is very small, it does seem that the 
updated discrete action space from using a wrapper (that 
was also utilized by many successful OpenAI Retro Con-
test teams), provided better training results than the default 
“gym.actions.Discrete” action space. Most notably, the 
first training attempt with the updated action space 
achieved a mean training score of approximately 2,508, in-
dicating that this model may have achieved the goal of 
completing the first level. The second training attempt 
(“T2”) with the updated discrete action space and un-
changed parameters and seed value yielded a much lower 
score. Again, similar to testing with cropping the observa-
tion space, these results indicate that stochasticity plays a 

 
 
Figure 5: Training results to 5 million steps, showing 
comparison of training models with an RGB observa-
tion space, RGB observation space re-sized to 168x168 
pixels, and the default observation space (greyscale 
84x84 pixels) 

 
 
Figure 6: Training results to 5 million steps, showing 
comparison of using “MarioDiscretizer” wrapper ver-
sus the default gym.actions.Discrete action space 
 



factor in these results (since all settings were exactly the 
same with both the “T1” and “T2” training runs). So, while 
it would be ideal to gather many more samples to account 
for randomness, that unfortunately is not feasible due to the 
time and expense of computing these models. Neverthe-
less, the updated discrete action space, using the “Mari-
oDiscretizer” wrapper, will be used for subsequent testing 
of PPO hyperparameters. 
 
Modifying PPO Algorithm Hyperparameters 
For tuning hyperparameters, I again looked to what suc-
cessful teams in the OpenAI Retro Contest did. Specifical-
ly, I compared the Baselines PPO2 algorithm hyperpa-
rameter defaults with what Team Dharmaraja used (Yang 
2018). The table of comparisons is shown in Figure 7. In 
particular, Team Dharmaraja used different hyperparame-
ter values for nsteps (8,192 versus the default of 2,048), 
nminibatches (8 versus the default of 4), ent_coef (0.001 
versus the default of 0), and lr (0.00002 versus the default 
of 0.0003). It’s also worth noting that Team Dharmaraja 
appears to have trained their model to 10 billion timesteps, 
which is infeasible for the scope of this project, and there-
fore may affect whether some of these hyperparameters 
work well on the models for this project. 

The table of hyperparameters that were tested are shown 
in Figure 8. The V1 hyperparameters are all copied exactly 
from what Team Dharmaraja used, except for training to 5 
million timesteps instead of 10 billion. For subsequent ver-
sions of hyperparameters, only one setting was changed 
each time (shown in bold in Figure 8). For hyperparame-
ters V2, the learning rate parameter was updated to the 
Baselines default of 0.0003, because the learning rate used 
in V1 hyperparameters may be accounting for a signifi-
cantly longer training time than is possible here. And for 
hyperparameters V3, the “nsteps” parameter, which is the 
number of steps in the environment between policy up-
dates, was updated to the Baselines default of 2,048. The 
graphed results of the models using those hyperparameters 
are displayed in Figure 9. 

While the models trained with the V1 and V2 versions 
of hyperparameters did not show much divergence from 

average mean scores from prior testing, the V3 version of 
hyperparameters appears to consistently generate a model 
that converges on a successful strategy by the end of the 5 
million step training. In particular, the first test with V3 
hyperparameters was very successful, ending with a mean 
reward score of 2,742 points. Subsequent tests with the V3 
hyperparameters were not nearly as successful as the first, 
though in general they appear to be an improvement over 
the other model settings. 

 
Conclusions 
To determine whether any of the trained models were actu-
ally capable of completing the first level, I utilized the re-
cording function from the Baselines library to save video 
output of the more successful trained models. From view-
ing the videos, I was able to determine whether the model 
could complete the first level, which is listed on the first 
table in Figure 10.  
 The takeaway from this data is that none of the models 
which had achieved a mean training score of approximate-
ly 2,400 or more points (which was set as the baseline 
score for completing the level), was actually able to com-
plete the level. 

 
Figure 7: Baselines PPO2 default hyperparameters 
versus those used by Team Dharmaraja (Retro Contest 
winners) 
 

 
Figure 8: hyperparameter settings used  
for V1, V2, and V3 models.  

 

 
Figure 9: Training results to 5 million steps, showing 
models using hyperparameter versions V1, V2, and V3. 
 



 
As such, I took two of the models and continued their 
training to 20 million steps, and viewed the resulting vide-
os of those models. In both instances, the models had been 
able to complete the first level in an extremely efficient 
manner. So, for this project, the conclusion is that a model 
can be trained to successfully complete the first level of 
Mario Bros.  
 An interesting observation from recording videos of the 
trained models is that, with any alteration to the observa-
tion space that the model was trained on, the quality of the 
model’s actions is significantly decreased. For example, all 
of the models had been trained with the score cropped from 
the environment, but because it would be helpful to see the 
score when viewing video playback of the models, I initial-
ly recorded videos with the score cropped back into the ob-
servation space. But unfortunately, each model performed 
very poorly when the score information was added back to 
the display. 
 Finally, to look at whether a model trained to 20 million  
timesteps from the beginning would perform similarly to 
the models that I had continued from previous training, I 
trained a model using the default Baselines settings (with 
only cropping applied) to 20 million steps, and graphed the 
results alongside the two other models. That graph is dis-
played in Figure 11.  
 An inference that can be made from the graph in figure 
11 is that a model in a somewhat difficult environment (in 
this case, one with sparse rewards for shaping desired be-
havior) may not always converge to a successful strategy 
of state-action pairs, even when trained for a fairly large 
number of steps. So, a takeaway with this case is that an 
ideal strategy for developing reinforcement learning mod-
els may be to initially train many models for fewer number 
of steps, then selectively choose the models that performed 
the best within that limit, to continue training to whatever 
the ultimate goal may be.  

And further, while it ultimately appears from the graph 
in Figure 11 that, after 20 million steps of training, the 

model with tuned hyperparameters did not significantly 
outperform the model with default parameters, the model 
with tuned hyperparameters does seem to show a higher 
likelihood of initially converging to a successful strategy in 
a shortened training window, so there seems to be clear 
benefit to hyperparameter tuning, as well as other tweaks 
to the observation and action space.  

 
Future Work 
Because there was an obvious element of stochasticity with 
the reinforcement learning experiments conducted for this 
project, it would be beneficial to further explore alternate 
implementations of the PPO algorithm, to determine 
whether other implementations suffer from the same issue.  
 While the PPO algorithm was capable of learning to 
complete the first level of Mario Bros, I believe that there 
may exist other algorithm implementations that could im-
prove upon the long training time. In particular, implemen-
tations of reinforcement learning algorithms that utilize 
behavioral cloning or imitation learning seem to be ideal 
candidates for improving upon the results of this project. 
Ideally, such an algorithm could be “pre-trained” on how 
to kill an enemy, and thus avoid the long, uncertain process 
of learning that behavior in an unsupervised manner. 
 

Appendix: Gameplay Details 
The game Mario Bros (from the Nintendo Entertainment 
System) has a fully-observable environment and a discrete 
action space. A screenshot of the game is included below. 
From my initial research, it appears that the gameplay pro-
gresses the same each time (such as, enemies’ behavior 
will always be predictable unless affected by the player).  

Regarding movement, the environment is static, but the 
player, as well as “enemies,” do move. At each vertical 
level (see game screenshot below), moving to the edge of 
the screen will move the player to the opposite edge. To 
defeat enemies, the player must “stun” the enemy by jump-

 
Figure 10: Results table from viewing video of models 

 
Figure 11: Training results of models trained to 20 
million steps 



ing up and hitting it from the platform below, then run into 
the enemy while it is still stunned to kill it. An enemy will 
only stay in the stunned state for approximately 9 seconds, 
before it returns to normal function. For scoring, stunning 
an enemy returns 10 points, killing an enemy returns 800 
points, and an additional 800 points can be received by col-
lecting a coin that emits after an enemy is defeated. The 
emitted coins travel through the level and disappear if they 
reach the end before the player collects them. There is no 
time limit on each level, though enemies will increase in 
speed after the first two instances of being stunned. 

Due to the two-step process of defeating an enemy, and 
the time factor in that process, there exists a challenge in 
developing a RL agent that can develop optimal behavior 
in the game. While an agent may occasionally kill an ene-
my from random sampling of actions (and accordingly get 
a big reward), a RL algorithm may fail to learn the full set 
of actions that contributed to receiving the reward. Howev-
er, there are rewards for every step of completing a level: 
stunning an enemy, killing an enemy, and then repeating 
until all enemies are killed. So, given unlimited training it-
erations, a deep RL agent should eventually be able to 
learn to complete the entire game. However, realistically, 
training iterations will be limited for an RL agent. 

In addition, there is the possibility of an agent learning 
to farm points by stunning an enemy over and over again. 
In manual tests, there does not appear to be a limit on how 
many times a player can stun an enemy to receive 10 
points, so a trained agent could learn to repeat this behav-
ior but not ever kill the enemy. However, the game does 
have a built-in defense against this behavior, which is that 
enemies will transform into a faster version after being 
stunned twice. Accordingly, point-farming behavior will 
lead to the game becoming more difficult, and so it seems 

unlikely for a RL to achieve a large score from this behav-
ior. 
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Appendix Figure 1: a screenshot of the Mario Bros 
game on the first level 


