

Reinforcement Learning:

Training a Deep RL Model to Play Mario Bros

Zack Strathe

Kansas State University – CIS 730

Introduction
In the field of reinforcement learning (RL), models can be
trained that are capable of learning to complete tasks with
only a reward function to guide positive behavior. In real-
world applications, there seem to be countless use cases
where reinforcement learning could be used to automate
tasks—for example, with self-driving cars that are capable
of learning to drive more safely, or software-agents at-
tempting to maximize efficiency of an electrical grid. The
concept of artificial intelligence that can continually learn
to become better is very promising, but there exist draw-
backs and limitations. And to explore the concept of rein-
forcement-learning, it is helpful to simplify an implementa-
tion with a toy example, such as a game-playing agent.
Therefore, the focus of this project will be to train a RL
agent to play a simple retro game from the Nintendo Enter-
tainment System: Mario Bros.

The overall goal of this project is to utilize a deep-
reinforcement policy to train a game-playing agent to suc-
cessfully play the classic NES game Mario Bros and com-
plete the first level. This game is very simple, with only
three controls available for the agent (move left, move
right, jump). The action space in this game is discrete and
the environment is fully-observable. Further details about
the game environment are presented in Appendix I. My re-
search objective is to research multiple reinforcement-
learning (RL) algorithms and implement the best candidate
for training a game-playing agent. After selecting an algo-
rithm to utilize, in order to develop the best possible mod-
el, I will experiment with modifying the reward function,
modifying the action space, modifying the observation
space, and modifying algorithm hyperparameters.

Background and Related Work
The implementation for controlling a reinforcement-
learning agent in Mario Bros already exists as a pre-built
environment in OpenAI Gym Retro (OpenAI n.d.). A
YouTube video (World of Longplays 2012) shows game-
play by a human player, from which I will use the score as
a baseline for how many points the RL agent should score

to complete the first level. In the video, the player com-
pletes the first level with a score of 2,430 points. There-
fore, if a trained RL agent achieves 2,430 points or greater,
it will be assumed that it can complete the first level.

To become more familiar with some basic RL algo-
rithms I researched the documentation from OpenAI Spin-
ningUp (OpenAI n.d.). My findings were that either Prox-
imal Policy Optimization (PPO) or Trust Region Policy
Automation (TRPO) algorithms would be an ideal choice
for a game-playing agent, as they are currently leading-
edge when handling discrete action spaces. And further,
the paper “Proximal Policy Optimization Algorithms”
(Schulman et. Al. 2017), indicates that both PPO and
TRPO achieve similar results, but with PPO having a more
simplified implementation and sampling complexity, so I
believe that PPO will be the ideal choice for this imple-
mentation of reinforcement learning. In addition, I re-
searched into examples of others’ work that implement
game-playing agents utilizing OpenAI Gym Retro; a
webpage (Poliquin 2019) provides some in-depth infor-
mation about doing this. The website’s author linked to a
number of videos showing the results of game-playing
agents trained using OpenAI Gym Retro, utilizing the
PPO2 algorithm from OpenAI Baselines. The website also
shows how to graph metrics such as the training reward
score over time.

Methodology
To train a RL agent to play Mario Bros, I utilized the
OpenAI Gym Retro library for Python, which contains a
fairly simple interface for conducting reinforcement-
learning on a supported game environment. Located in the
‘MarioBros-Nes’ files within Gym Retro directory is a
‘scenario.json’ file which defines the reward function for
the game. The ‘scenario’ file defines memory locations of
variables that are to be tracked and used as an input to the
reward function. By default, the Mario Bros scenario file
defines the reward function as only the game score. The
obvious benefit of this reward function is that it should
work in most cases, as the goal of most games is generally

to score more points. However, this reward function does
have an obvious drawback: it can lead the agent to behav-
ior that may not contribute to the goal. In many games, ac-
tions can reward the player with points, though the action
may not contribute toward progression in completing the
game. As noted in gameplay notes in Appendix I, Mario
Bros especially features gameplay elements that may lead a
RL agent to engage in repetitive behavior that does not
contribute to completing the level.

In addition to utilizing the Open AI Retro library, for
choosing a state-of-the-art algorithm, I decided to utilize
the Open AI Baselines library, which supplies of number
of implementations of leading-edge algorithms. And in
particular, Baselines contains the PPO algorithm, which
my research indicates to be a leading algorithm when it
comes to performance as well as simplified implementa-
tion. And although there exist many alternative libraries
that also provide PPO algorithms, I determined through in-
formal testing that the Baselines library provided the fast-
est training speed and best results with the “PPO2” algo-
rithm, which uses TensorFlow 1.x for execution. One
downside to using the Baselines library is that it is not cod-
ed very modular and can be difficult to utilize without us-
ing the command-line interface that is provided with the li-
brary, which makes building a custom model from scratch
to be a difficult approach. However, I found that utilizing
the command line interface worked well, and any code cus-
tomizations could be simply done by downloading the li-
brary and modifying those files as-needed.

For monitoring the training process with real-time
graphs of the mean reward score, utilized TensorBoard.
Further, TensorBoard provides a simple method of saving
training logs as “.csv” files for further analysis or devel-
opment of visualizations. For the development of visualiza-
tions, first made manual modifications to the logs (to re-
scale the number of steps logged, as some algorithm pa-
rameters will provide different intervals for the same total
number of steps). Then, I imported the logs into Tableau to
build comparative graphs.

One very important consideration with training a RL
agent is the availability of computing resources. Because it
is commonplace for RL training to take millions of steps,
training time without sufficient computing resources can
be a very long process. In my initial testing with a laptop
(equipped with an AMD Ryzen 5 3500U CPU and no ded-
icated GPU), the training time to reach 1 million steps was
measured in days. Therefore, it was quickly apparent that I
needed to utilize cloud computing, and preferably with the
option of utilizing a GPU since the Baselines “PPO2” algo-
rithm enables GPU calculations for a significant speedup
(OpenAI 2017). Therefore, I selected to utilize the Google
Cloud platform, which offers dedicated VM instances of
Colab notebooks, with the option of adding a dedicated
GPU. After informal testing, I opted to utilize a VM with
an 8-core vCPU and a dedicated Nvidia Tesla T4 GPU.

With this VM, I was able to train a model to 5 million steps
in approximately 2 hours.

Experiment Design
To evaluate whether a trained model met the goal of com-
pleting the first level, I used a score benchmark because it
is easy to extract from the game environment. So, if during
training a model, the mean training reward score met or
exceeded the baseline score of 2,430 points, determined
from a video of a human player (World of Longplays
2012), the assumption was that the model had met the goal.
Further, if a model did achieve a training mean reward
score above 2,430 points, I saved the model and recorded a
video to verify whether it actually could complete the lev-
el.
 To attempt to improve upon a model trained with default
parameters from the Gym Retro and Baselines libraries, I
attempted improvements in four categories: modifying the
reward function, modifying the observation space, modify-
ing the action space, and last, modifying the PPO algo-
rithm hyperparameters. Each training run consisted of
training a model to 5 million timesteps, which based on in-
formal testing, seemed to be an approximate point where
models will either begin to converge to a successful strate-
gy or not.

Results and Conclusions
Modifying the Reward Function
To modify the reward function, I updated the default “sce-
nario.json” file for the Mario Bros game in the Gym files
to calculate the reward based on killing enemies, providing
a reward of 1 for each time the number of enemies is re-
duced. To do this, I utilized the OpenAI Gym Integration
Tool to find the memory location where the variable for the
number of enemies is stored. With this variable located, I
updated the “data.json” file to include the new variable,
and then updated the scenario file to give a reward of 1

 Figure 1: Modified “data.json” file to
 include the “enemies” variable and memory
 address

each time the number of enemies variable decreases.
Screenshots of the modified data and scenario files are
shown in Figures 1 and 2.

The PPO model was trained to 5 million steps using the
modified reward function, and the results are shown in
Figure 3. By the shape of the graph, it is apparent that the
agent was unable to learn any beneficial behavior since
there is no trend shown in the mean reward value increas-
ing over time. This is likely because rewards are too sparse
with the modified reward function, which does not allow
the model to generalize state and action pairs, since most
actions are accompanied with zero change to the reward
function. Therefore, for subsequent testing of other model
settings, I reverted to the default reward function (which
uses the game score only).

Modifying the Observation Space
While looking into modifying the reward function, I no-
ticed that Gym Retro allows for cropping of the observa-
tion space with the “scenario.json” file (with cropping
shown in the screenshots in Figure 2). Because using a
convolutional neural network (CNN) utilizes images of the
game environment (IBM 2020), it seems sensible that a
model would better be able to generalize states and actions
if useless information/noise is removed from the inputs.
For example, the score at the top of the screen will update
throughout the training process and would be sampled by
the CNN. At best, I believe the model training process may
be only slightly slowed down by the extra erroneous input
data; and at worst, the score info could cause the model to
make incorrect state-action pair associations. Therefore, I
experimented with training the model and cropping out the
score info (as well as some unchanging space at the bottom
of the screen). At this stage I also compared results from
using the “CnnPolicy” and “ImpalaCnnPolicy” that are
provided with the Baselines library. The results are shown
in Figure 4.

While the first training run with the cropped environ-
ment and CNN policy seemed to be extremely promising
(shown as “Cropped (CNN) – T1” in Figure 4), the subse-
quent training run (noted as “T2” in Figure 4) using the
same parameters and seed displayed results much closer to
the average. While this does show that stochasticity is cer-
tainly a factor in these training experiments (despite using
an unchanging seed number), the graph does seem to indi-
cate that the cropped observation space generally outper-
forms the uncropped observation space, and similarly, that
the “CnnPolicy” outperforms the “ImpalaCnnPolicy.”
While a larger sampling size would significantly help with

Figure 2: Showing the default versus modified scenario
files, with the modified reward function calculated to
provide of reward of 1 every time the number of ene-
mies is reduced

Figure 3: Training results to 5 million steps with the
modified reward function

Figure 4: Training results to 5 million steps, showing
comparison of cropping the environment, as well as
comparison between the CNN and
ImpalaCNN networks provided with the OpenAI Base-
lines library

making these determinations, the significant computing
cost and time of each training run severely limits feasibility
of additional sampling. Accordingly, for the following
model-training experiments, each will utilize the cropped
observation space and “CnnPolicy.”
 In modifying the observation space, I also looked at re-
sults from OpenAI’s Retro Contest (OpenAI 2018), where
teams competed to train agents to play the game Sonic the
Hedgehog. Specifically, I looked to what the winning
team—Team Dharmaraja—did (Yang 2018). The default
Baselines PPO2 algorithm samples the environment as an
84x84 pixel greyscale image, however Team Dharmaraja
modified that to utilize an RGB image. Therefore, I also at-
tempted to train my model with an RGB image input,
which I accomplished by modifying one of the default
“wrappers” in the Baselines library—specifically the
“WarpFrame” wrapper which changes how the environ-
ment image is sampled. In addition, I also tested modifying
parameters of the WarpFrame wrapper to double the size
of images, using 168x168 pixel images rather than the de-
fault of 84x84 pixels. To implement these modifications
with the Baselines library, I modified some of the Base-
lines library files. When using a Gym Retro environment,
the Gym environment is built from the Base-
lines/common/retro_wrappers.py file. Within this file, I
modified the call within the “wrap_deepmind_retro” func-
tion to build the environment using the WarpFrame wrap-
per, specifying optional parameter values for “width”,
“height”, and “greyscale.” The results of training the mod-
els with these settings to 5 million timesteps are shown in
Figure 5.

 From observing the graph in Figure 5, it’s easy to de-
termine that there seems to be no benefit from both using a

RGB-colored observation space and re-sizing the observa-
tion space. And though I don’t have metrics for it, the
training speed with both of these modifications were sig-
nificantly slower than using the default greyscale 84x84
image of the game environment. Therefore, no further tests
will utilize these settings, and the only observation space
modification for subsequent tests will be a cropped game
image.

Modifying the Action Space
To modify the action space, I again looked at what suc-
cessful teams did in the OpenAI Retro Contest. I observed
in the Baselines code library that, while the default Retro
Gym environment is built defining the action space using a
“retro.actions.Discrete” class, the successful teams utilized
a Gym wrapper class called “SonicDiscretizer” which spe-
cifically defined the buttons for the game that could be uti-
lized by the model. Therefore, for this project, I copied that
class and called it “MarioDiscretizer,” and provided a
mapping of the three possible actions in the game (“Left”,
“Right”, and “Jump”). The training results from utilizing
the modified action space are displayed in Figure 6.

While the sample size is very small, it does seem that the
updated discrete action space from using a wrapper (that
was also utilized by many successful OpenAI Retro Con-
test teams), provided better training results than the default
“gym.actions.Discrete” action space. Most notably, the
first training attempt with the updated action space
achieved a mean training score of approximately 2,508, in-
dicating that this model may have achieved the goal of
completing the first level. The second training attempt
(“T2”) with the updated discrete action space and un-
changed parameters and seed value yielded a much lower
score. Again, similar to testing with cropping the observa-
tion space, these results indicate that stochasticity plays a

Figure 5: Training results to 5 million steps, showing
comparison of training models with an RGB observa-
tion space, RGB observation space re-sized to 168x168
pixels, and the default observation space (greyscale
84x84 pixels)

Figure 6: Training results to 5 million steps, showing
comparison of using “MarioDiscretizer” wrapper ver-
sus the default gym.actions.Discrete action space

factor in these results (since all settings were exactly the
same with both the “T1” and “T2” training runs). So, while
it would be ideal to gather many more samples to account
for randomness, that unfortunately is not feasible due to the
time and expense of computing these models. Neverthe-
less, the updated discrete action space, using the “Mari-
oDiscretizer” wrapper, will be used for subsequent testing
of PPO hyperparameters.

Modifying PPO Algorithm Hyperparameters
For tuning hyperparameters, I again looked to what suc-
cessful teams in the OpenAI Retro Contest did. Specifical-
ly, I compared the Baselines PPO2 algorithm hyperpa-
rameter defaults with what Team Dharmaraja used (Yang
2018). The table of comparisons is shown in Figure 7. In
particular, Team Dharmaraja used different hyperparame-
ter values for nsteps (8,192 versus the default of 2,048),
nminibatches (8 versus the default of 4), ent_coef (0.001
versus the default of 0), and lr (0.00002 versus the default
of 0.0003). It’s also worth noting that Team Dharmaraja
appears to have trained their model to 10 billion timesteps,
which is infeasible for the scope of this project, and there-
fore may affect whether some of these hyperparameters
work well on the models for this project.

The table of hyperparameters that were tested are shown
in Figure 8. The V1 hyperparameters are all copied exactly
from what Team Dharmaraja used, except for training to 5
million timesteps instead of 10 billion. For subsequent ver-
sions of hyperparameters, only one setting was changed
each time (shown in bold in Figure 8). For hyperparame-
ters V2, the learning rate parameter was updated to the
Baselines default of 0.0003, because the learning rate used
in V1 hyperparameters may be accounting for a signifi-
cantly longer training time than is possible here. And for
hyperparameters V3, the “nsteps” parameter, which is the
number of steps in the environment between policy up-
dates, was updated to the Baselines default of 2,048. The
graphed results of the models using those hyperparameters
are displayed in Figure 9.

While the models trained with the V1 and V2 versions
of hyperparameters did not show much divergence from

average mean scores from prior testing, the V3 version of
hyperparameters appears to consistently generate a model
that converges on a successful strategy by the end of the 5
million step training. In particular, the first test with V3
hyperparameters was very successful, ending with a mean
reward score of 2,742 points. Subsequent tests with the V3
hyperparameters were not nearly as successful as the first,
though in general they appear to be an improvement over
the other model settings.

Conclusions
To determine whether any of the trained models were actu-
ally capable of completing the first level, I utilized the re-
cording function from the Baselines library to save video
output of the more successful trained models. From view-
ing the videos, I was able to determine whether the model
could complete the first level, which is listed on the first
table in Figure 10.
 The takeaway from this data is that none of the models
which had achieved a mean training score of approximate-
ly 2,400 or more points (which was set as the baseline
score for completing the level), was actually able to com-
plete the level.

Figure 7: Baselines PPO2 default hyperparameters
versus those used by Team Dharmaraja (Retro Contest
winners)

Figure 8: hyperparameter settings used
for V1, V2, and V3 models.

Figure 9: Training results to 5 million steps, showing
models using hyperparameter versions V1, V2, and V3.

As such, I took two of the models and continued their
training to 20 million steps, and viewed the resulting vide-
os of those models. In both instances, the models had been
able to complete the first level in an extremely efficient
manner. So, for this project, the conclusion is that a model
can be trained to successfully complete the first level of
Mario Bros.
 An interesting observation from recording videos of the
trained models is that, with any alteration to the observa-
tion space that the model was trained on, the quality of the
model’s actions is significantly decreased. For example, all
of the models had been trained with the score cropped from
the environment, but because it would be helpful to see the
score when viewing video playback of the models, I initial-
ly recorded videos with the score cropped back into the ob-
servation space. But unfortunately, each model performed
very poorly when the score information was added back to
the display.
 Finally, to look at whether a model trained to 20 million
timesteps from the beginning would perform similarly to
the models that I had continued from previous training, I
trained a model using the default Baselines settings (with
only cropping applied) to 20 million steps, and graphed the
results alongside the two other models. That graph is dis-
played in Figure 11.
 An inference that can be made from the graph in figure
11 is that a model in a somewhat difficult environment (in
this case, one with sparse rewards for shaping desired be-
havior) may not always converge to a successful strategy
of state-action pairs, even when trained for a fairly large
number of steps. So, a takeaway with this case is that an
ideal strategy for developing reinforcement learning mod-
els may be to initially train many models for fewer number
of steps, then selectively choose the models that performed
the best within that limit, to continue training to whatever
the ultimate goal may be.

And further, while it ultimately appears from the graph
in Figure 11 that, after 20 million steps of training, the

model with tuned hyperparameters did not significantly
outperform the model with default parameters, the model
with tuned hyperparameters does seem to show a higher
likelihood of initially converging to a successful strategy in
a shortened training window, so there seems to be clear
benefit to hyperparameter tuning, as well as other tweaks
to the observation and action space.

Future Work
Because there was an obvious element of stochasticity with
the reinforcement learning experiments conducted for this
project, it would be beneficial to further explore alternate
implementations of the PPO algorithm, to determine
whether other implementations suffer from the same issue.
 While the PPO algorithm was capable of learning to
complete the first level of Mario Bros, I believe that there
may exist other algorithm implementations that could im-
prove upon the long training time. In particular, implemen-
tations of reinforcement learning algorithms that utilize
behavioral cloning or imitation learning seem to be ideal
candidates for improving upon the results of this project.
Ideally, such an algorithm could be “pre-trained” on how
to kill an enemy, and thus avoid the long, uncertain process
of learning that behavior in an unsupervised manner.

Appendix: Gameplay Details
The game Mario Bros (from the Nintendo Entertainment
System) has a fully-observable environment and a discrete
action space. A screenshot of the game is included below.
From my initial research, it appears that the gameplay pro-
gresses the same each time (such as, enemies’ behavior
will always be predictable unless affected by the player).

Regarding movement, the environment is static, but the
player, as well as “enemies,” do move. At each vertical
level (see game screenshot below), moving to the edge of
the screen will move the player to the opposite edge. To
defeat enemies, the player must “stun” the enemy by jump-

Figure 10: Results table from viewing video of models

Figure 11: Training results of models trained to 20
million steps

ing up and hitting it from the platform below, then run into
the enemy while it is still stunned to kill it. An enemy will
only stay in the stunned state for approximately 9 seconds,
before it returns to normal function. For scoring, stunning
an enemy returns 10 points, killing an enemy returns 800
points, and an additional 800 points can be received by col-
lecting a coin that emits after an enemy is defeated. The
emitted coins travel through the level and disappear if they
reach the end before the player collects them. There is no
time limit on each level, though enemies will increase in
speed after the first two instances of being stunned.

Due to the two-step process of defeating an enemy, and
the time factor in that process, there exists a challenge in
developing a RL agent that can develop optimal behavior
in the game. While an agent may occasionally kill an ene-
my from random sampling of actions (and accordingly get
a big reward), a RL algorithm may fail to learn the full set
of actions that contributed to receiving the reward. Howev-
er, there are rewards for every step of completing a level:
stunning an enemy, killing an enemy, and then repeating
until all enemies are killed. So, given unlimited training it-
erations, a deep RL agent should eventually be able to
learn to complete the entire game. However, realistically,
training iterations will be limited for an RL agent.

In addition, there is the possibility of an agent learning
to farm points by stunning an enemy over and over again.
In manual tests, there does not appear to be a limit on how
many times a player can stun an enemy to receive 10
points, so a trained agent could learn to repeat this behav-
ior but not ever kill the enemy. However, the game does
have a built-in defense against this behavior, which is that
enemies will transform into a faster version after being
stunned twice. Accordingly, point-farming behavior will
lead to the game becoming more difficult, and so it seems

unlikely for a RL to achieve a large score from this behav-
ior.

References
IBM. 2020. Convolutional Neural Networks.
https://www.ibm.com/cloud/learn/convolutional-neural-
networks.

OpenAI. n.d.. http://spinningup.openai.com

OpenAI. n.d.. http://gym.openai.com

OpenAI. 2017. Proximal Policy Optimization
https://openai.com/blog/openai-baselines-ppo/

OpenAI. 2018. Retro Contest: Results.
https://openai.com/blog/first-retro-contest-retrospective/

Poliquin, M. 2019. How to setup Open AI Baselines +
Retro. http://www.videogames.ai/2019/01/29/Setup-
OpenAI-baselines-retro.html

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.;
Klimov, O. 2017. Proximal Policy Optimization Algo-
rithms. arXiv:1707.06347 [cs.LG].

World of Longplays. 2012. NES Longplay [191] Mario
Bros. https://www.youtube.com/watch?v=WFptXdODy7k

Yang, Yu. 2018. main_ppo.py [Source code].
https://github.com/eyounx/RetroCodes/blob/master/A3gent
/main_ppo.py.

Appendix Figure 1: a screenshot of the Mario Bros
game on the first level

